Сорбционная очистка фенолсодержащих сточных вод кремний- и углеродсодержащими материалами

  • С.В. Довгань Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Владивосток, Россия https://orcid.org/0009-0009-2181-1703
  • О.Д. Арефьева Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Вдадивосток, Россия; Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия https://orcid.org/0000-0001-8001-4370
  • А.В. Ковехова Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Владивосток, Россия; Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия https://orcid.org/0000-0001-7179-2736
  • А.Е. Панасенко Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия https://orcid.org/0000-0001-7875-6068
  • М.А. Цветнов Дальневосточный федеральный университет https://orcid.org/0009-0009-5274-0143
Ключевые слова: сорбция, рисовая шелуха, фенол, кремний- и углеродсодержащие сорбенты, кинетика, изотерма адсорбции

Аннотация

В работе исследована сорбция фенола из водных растворов кремний- и углеродсодержащими материалами, полученными в различных условиях из рисовой шелухи и соломы. Показано, что сорбционная активность по фенолу для образов, полученных пиролизом рисовой шелухи в промышленных условиях, составила 39%. Кремний- и углеродсодержащие материалы, синтезированные окислительным обжигом в лабораторных условиях, не поглощают фенол. Продукты пиролиза имеют сложное строение и находятся в аморфном и аморфно-кристаллическом состоянии. Кинетические исследования показали, что сорбция фенола лимитируется двумя стадиями – с одной стороны внутренней и внешней диффузией, с другой – химическим взаимодействием с поверхностными активными группами образцов. Термодинамические параметры указывают на то, что процесс является самопроизвольным (ΔG298 < 0) и экзотермическим (ΔH < 0), подвижность молекулы фенола уменьшается при адсорбции (ΔS < 0). Обработка изотерм адсорбции фенола по моделям Фрейндлиха, Дубинина-Астахова, Ленгмюра и БЭТ показала, что сорбция определяется нековалентными взаимодействиями адсорбат-адсорбент. Установлено, что при увеличении pH поглотительная способность снижается, что обусловлено формой нахождения фенола (в виде молекулы или фенолят-иона). Низкая степень десорбции фенола дистиллированной водой и раствором гидроксида натрия подтверждает сильное взаимодействие фенола с поверхностью материалов, которое зависит от времени контакта и среды раствора.

Литература

Yan M.A., Naiyun G.A.O., Wenhai C.H.U., Cong L.I. (2013). Removal of phenol by powdered activated carbon adsorption. Front. Environ. Sci. Eng., 7(2), 158‒165. https://doi.org/10.1007/s11783-012-0479-7.

Megharaj M., Pearson H.W., Venkateswarlu K. (1991). Toxicity of phenol and three nitrophenols towards growth and metabolic activities of Nostoc linckia, isolated from soil. Archives of Environmental Contamination and Toxicology, 21(4), 578–584.

Nair R. J., Sherief P. M. (1998). Acute toxicity of phenol and long-term effects on food consumption and growth of juvenile rohu Labeo rohita (Ham.) under tropical condition. Asian Fisheries Science, 10(3), 179–268. https://doi.org/10.33997/j.afs.1998.10.3.001.

Yang L., Wang Y., Song J., Zhao W., He X., Chen J., Xiao M. (2011). Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biology & Biochemistry, 43(5), 915–922. https://doi.org/10.1016/j.jhazmat.2011.05.031.

Anku W. W., Mamo M. A, Govender P. P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. Phenolic Compounds - Natural Sources, Importance and Applications, Chapter 17, 419‒443. https://doi.org/ 10.5772/66927.

Hiatt R.A., Haslam S.Z. (2009). The Breast Cancer and the Environment Research Centers: Transdisciplinary Research on the Role of the Environment in Breast Cancer Etiology. Environmental Health Perspectives, 117(12), 1814‒1822. https://doi.org/10.1289/ehp.0800120.

Vattem D. A., Shetty K. (2003). Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid‐state system. Process Biochemistry, 39, 367‒379.

Careghini A., Mastorgio A.F., Saponaro S., Sezenna E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711‒5741. https://doi.org/10.1007/s11356-014-3974-5.

Bruce R. M., Santodonato J., Neal M. W. (1987). Summary review of the health effects associated with phenol. Toxicology and Industrial Health, 3(4), 535‒568. https://doi.org/10.1177/074823378700300407.

Campanella L., Beone T., Sammartino M., Tomassetti M. (1993). Determination of phenol in wastes and water using an enzyme sensor. Analyst, 118, 979‒986. https://doi.org/10.1039/AN9931800979.

Abdullah M.P., Nainggolan H. (1991). Phenolic Water Pollutants in a Malaysia Basin. Environ Monit Assess, 19, 423‒431. https://doi.org/10.1007/BF00401330.

News B. (2002). Pollution leaks into River Dee. http://news.bbc.co.uk/2/hi/uk_news/wales/2275082.stm (дата обращения 19.05.2024).

Khairy M. (2013). Assessment of Priority Phenolic Compounds in Sediments From an Extremely Polluted Coastal Wetland (Lake Maryut, Egypt). Environ Monit Assess, 1(184), 441‒455. https://doi.org/10.1007/s10661-012-2566-4.

Stian R., Kathy C., Ben B., Michael M., Geert D.C. Huffington Post (2011). China’s Lanzhou warns drinking water contains dangerous levels of benzene. https://www.huffpost.com/entry/lanzhou-water-benzene_n_5131728 (accessed 19.05.2024).

Khatoonabadai A., Dehcheshmeh A.R.M. (2006). Oil pollution in the Caspian Sea coastal waters. Int. J. Environ. Pollut., 26(4), 347‒363.

SanPiN 1.2.3685-21 Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. https://docs.cntd.ru/document/573500115 (accessed 20.05.2024) (in Russ.).

Order of the Ministry of Agriculture of the Russian Federation No. 552 dated December 13, 2016 “On Approval of Water Quality Standards for Fishery Water Bodies, Including Standards for Maximum Permissible Concentrations of Harmful Substances in the Waters of Fishery Water Bodies.” https://docs.cntd.ru/document/420389120 (accessed 20.05.2024) (in Russ.)

Belyaeva O.V., Golubeva N.S., Velikanova E.S., Gora N.V. (2012). The use of new carbon adsorbents for water purification from phenol. Technique and technology of food production, (1), 1‒4 (in Russ.).

Maslov N. V., Movchan N. I., Trutneva V. A. (2015). Application of statistical methods for monitoring the phenol content in the surface waters of lakes of the Kaban ecosystem. Bulletin of the Technological University, 18(6), 179‒184 (in Russ.).

Nikolaeva N.A. (2014). The use of the qualitative state of the Timpton River basin water in connection with the design of the Cancun hydroelectric power station. Fundamental Research, (9-10), 2241‒2245 (in Russ.).

Potenko E.I., Zhukova N.I. (2017). Phenolic compounds in surface and drinking waters. XI International Environmental Forum “Nature without Borders”: conference proceedings, 5‒10 (in Russ.)

Mohd A. (2020). Presence of phenol in wastewater effluent and its removal: an overwiew. International Journal of Environmental Chemistry, 1‒23. https://doi.org/10.1080/03067319.2020.1738412.

Saleh S., Younis A., Ali R., Elkady E. (2019). Phenol removal from aqueous solution using amino modified silica nanoparticles. Korean Journal of Chemical Engineering, 36(4), 529‒539. https://doi.org/10.1007/s11814-018-0217-3

Roostaei N., Tezel F. H. (2004). Removal of phenol from aqueous solutions by adsorption. Journal of Environmental Management, 70, 157‒164. https://doi.org/10.1016/j.jenvman.2003.11.004

Radovic L.R., Moreno-Castilla C., Rivera-Utrilla J. (2000). Carbon Materials as Adsorbents in Aqueous Solutions. Chemistry and Physical Carbon, 27, 227‒405.

Mojoudi N., Mirghafari N., Soleimani M., Shariatmadari H., Belver C., Bedia J. (2019). Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Scientific Reports, 9(1), 1‒12. https://doi.org/10.1038/s41598-019-55794-4.

Atieh M. A. (2014). Removal of Phenol from Water Different Types of Carbon – A Comparative Analysis. APCBEE Procedia, 10, 136‒141. https://doi.org/10.1016/j.apcbee.2014.10.031.

Arefieva O. D., Zemnukhova L. A., Kovekhova A.V., Morgun N. P., Tsvetnov M. A. (2020). Preparation, composition and properties of carbon-containing materials from vegetable raw materials. Chemistry of vegetable raw materials, (2), 381‒388. https://doi.org10.14258/jcprm.2020026292 (in Russ.)

Eremin I. S., Zaitseva E. A., Rassolova A. S., Voronina K. E. (2020). Sorption properties of a carbon adsorbent based on corn stalks. Problems and prospects of sustainable development of the agro-industrial complex, 254‒261 (in Russ.).

Zaitseva E. A., Eremin I. S. (2020). Secondary use of sugar beet pulp. Integration and development of scientific, technical and educational cooperation - a look into the future, 75‒77 (in Russ.).

Efremov S. A., Kabulov A. T., Nechipurenko S. V. (2015). Production and research of new carbon materials from plant waste and their application in the purification of gas-air mixtures. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences, (5), 527‒531 (in Russ.).

Kutischeva E. S., Usoltseva I. O., Perederin Yu. V. (2021). Methods for obtaining highly dispersed silicon dioxide. Polzunovsky Bulletin, (2), 188‒192. https://doi.org/10.25712/ASTU.2072-8921.2021.02.026 (in Russ.)

Zemnukhova L. A., Egorov A. G., Fedorishcheva G. A., Barinov N. N., Sokol’nitskaya T. A., A. I. Botsul. (2006). Properties of Amorphous Silica Produced from Rice and Oat Processing Waste. Inorganic Materials, 42(1), 24‒29. https://doi.org/10.1134/S0020168506010067.

Minakova T.S. (2007). Adsorption processes on the surface of solids. A study guide. Tomsk: Publishing House of the Tomsk University. p. 283 (in Russ.).

Vieira A.P., Santana S.A.A., Bezerra C.W.B., Silva H.A.S., Chaves, J.A.P., de Melo J.C.P., da Silva Filho E. C., Airoldi C. (2009). Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. Journal of Hazardous Materials, 166(2-3), 1272‒1279. https://doi.org/10.1016/j.jhazmat.2008.12.043.

GOST 4453-74. Powdered Activated Wood Charcoal for Clarification. Technical Specifications. https://docs.cntd.ru/document/1200017212 (accessed 22.05.2024). (in Russ.)

Ho Y. S., Ng J. C. Y., McKay G. (2000). Kinetics of pollutant sorption by biosorbents: review. Separation and purification methods, 2(29), 189‒232. https://doi.org/10.1081/SPM-100100009.

Douven S., Paez C. A., Gommes C. J. (2015). The range of validity of sorption kinetic models. Journal of colloid and interface science, 448, 437‒450.

Javadian, H. (2014). Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyamidine/polypyrrole copolymer nanofibers from aqueous solution. Journal of industrial and engineering chemistry, 6(20), 4233‒4241.

Boyd G. V., Adamson A. V., Mayers L. S. (1949). Chromatographic method for the determination of ions. Chemistry. P. 333.

Frolov Yu.G. (2004). The course of colloidal chemistry. Surface phenomena and dispersed systems. Moscow: Alliance Publishing House. P. 463. (in Russ.)

Ho Y., Ng J. C. Y., McKay G. (2000). Kinetics of pollutant sorption by biosorbents: review. Separation and purification methods, 29(2), 189‒232. https://doi.org/10.1081/SPM-100100009.

Keltsev N.V. (1984). Fundamentals of adsorption technology. M.: Khimiya. P. 592 (in Russ.).

GOST 4919.2 2016 Methods of preparation of buffer solutions. https://docs.cntd.ru/document/1200141402 (accessed 26.06.2024) .

Tran H., Chao H. (2018). Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process. Environ. Sci. Pollut. Res., 25(13), 12808‒12820. https://doi.org/10.1007/s11356-018-1295-9.

Ekokremniy LLC https://ekokremniy.ru (accessed 12.08.2024).

Burkat V.S., Burkat T.V., Lapshin A.E. (2017). Investigation of the physico-chemical properties of silicon-containing dust of ore-thermal furnaces. Non-ferrous metals. (4), 30‒34. https://doi.org/10.17580/tsm.2017.04.04 (in Russ.)

Nekhaev A.I., Maksimov A.L. (2021). Production of aromatic hydrocarbons from biomass (review). Petrochemistry, 61(1), 21‒42. https://doi.org/10.31857/S0028242121010020.

Greg S. (1984). Adsorption, specific surface area, porosity: trans. from English M.: Mir. P. 306. (in Russ.)

Gavrilova N.N., Nazarov V.V. (2015). Analysis of the porous structure based on adsorption data. Moscow: D. I. Mendeleev Russian Technical University. P. 132 (in Russ.).

Gholizadeh A., Swayampakula K., Gholami M., Farzadkia M. (2013). Removal Efficiency, Adsorption Kinetics and Isotherms of Phenolic Compounds from Aqueous Solution Using Rice Bran Ash. Asian Journal of Chemistry, 25, 3871‒3878. https://doi.org/10.14233/ajchem.2013.13828.

Kumar Bhargav Y., Rawal Ravindra K., Thakur Ashutosh, Sastry Narahari G. (2022) Chapter 7 – Reversible and irreversible functionalization of graphene. Theoretical and Computational Chemistry, 21, 157‒189. https://doi.org/10.1016/B978-0-12-819514-7.00005-1.

Le T. K. O., Jung S., Pham T. H., Kim T. (2024). Highly porous biomass-derived graphene-based carbons for removal of phenol from wastewater. Colloid Surface A, 699, 134588. https://doi.org/10.1016/j.colsurfa.2024.134588.

Bhatia D., Saroha A. K. (2024). Biochar derived from pyrolysis of rice straw as an adsorbent for removal of phenol from water. J. Water Proc. Engineering, 59, 105003. https://doi.org/10.1016/j.jwpe.2024.105003.

Tang H., Zhao Y., Shan S., Yang X., Liu D., Cui F., Xing B. (2018) Theoretical Insight into the Adsorption of Aromatic Compounds on Graphene Oxide. Environ. Sci.: Nano. https://doi.org/10.1039/C8EN00384J.

Zhang K., Sun P., Faye M.C.A.S., Zhang Y. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. (2018). Carbon, 130, 730‒740. https://doi.org/10.1016/j.carbon.2018.01.036

Severo F.F., Silva L.S., Moscôso J.S.C., Sarfaraz Q., Júnior L.F.R., Lopes A.F., Marzari L.B., Molin G.D. Chemical and physical characterization of rice husk biochar and ashes and their iron adsorption capacity. (2020). Appl. Sci., 2, 1286. https://doi.org/10.1007/s42452-020-3088-2.

Arefieva O. D., Kovekhova A.V., Zemnukhova L. A., Morgun N. P. (2022). The use of a carbon-containing sorbent from rice fruit shells to remove phenol from aqueous solutions. Chemical Safety, 6(2), 132‒147. https://doi.org/10.25514/CHS.2022.2.23008 (in Russ.).

Rengaraj S., Moon Seung-Hyeon, Sivabalan R., Arabindoo B., Murugesan V. (2002). Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage., 22, 543‒548 http://dx.doi.org/10.1016/S0956-053X(01)00016-2.

Muthamilselvi P., Karthikeyan R., Kapoor Ashish, Prabhakar S. (2018). Continuous fixed bed studies for adsorptive remediation of phenol by garlic peel powder. Int. J. Ind. Chem, 9, 379‒390. https://doi.org/10.1007/s40090-018-0166-z.

Muthamilselvi P., Karthikeyan R., Kumar B.S.M. (2016). Adsorption of phenol onto garlic peel: optimization, kinetics, isotherm, and thermodynamic studies. Desalin. Water Treat., 57, 2089‒2103. https://dx.doi.org/10.1080/19443994.2014.979237.

Mishra S., Yadava S. S., Rawata S., Singha J., Kodurub J. R. (2019). Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J. Environ. Manage., 246, 362‒373. https://doi.org/10.1016/j.jenvman.2019.06.013.

Jafaria A. J., Alahabadic A., Saghic M. H., Rezaic Z., Rastegara A., Zamanid M. S., Singhe P., Hosseini-Bandegharaeic A. (2019). Adsorptive removal of phenol from aqueous solutions using chemically activated rice husk ash: equilibrium, kinetic, and thermodynamic studies. Desalin. Water Treat., 158, 233‒244. https://doi.org/10.5004/dwt.2019.24160.

Almahbashi N. M.Y., Kutty S. R.M., Jagaba A.H., Al-nini A., Al-Dhawi B.N.S., Rathnayake U. (2023). Phenol removal from aqueous solutions using rice stalk-derived activated carbon: Equilibrium, kinetics, and thermodynamics study. Case Stud. Chem. Environ. Eng., 8, 100471. https://doi.org/10.1016/j.cscee.2023.100471.

M. Kordi, N. Farrokhi, M. I. Pech-Canul, A. Ahmadikhah. (2024). Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Sci., 31(1), 14‒32. http://doi.org/10.1016/j.rsci.2023.08.005.

Опубликован
2025-06-23
Как цитировать
Довгань, С., Арефьева, О., Ковехова, А., Панасенко, А., & Цветнов, М. (2025). Сорбционная очистка фенолсодержащих сточных вод кремний- и углеродсодержащими материалами. Химическая безопасность, 9(1), 36 - 64. https://doi.org/10.25514/CHS.2025.1.28003
Раздел
Технологии ликвидации источников химической опасности