Regularities of the process of producing paradichlorobenzene by direct chlorination of the benzene ring. Review
Abstract
Paradichlorobenzene (p-DCB) is an important chemical with a wide range of uses from fumigant and antiseptic to a key raw material for the production of valuable plastic polyphenylene sulfide. The synthesis of p-DCB is carried out by chlorination of benzene. This is a complex process that involves the use of various types of process reactors, temperature conditions and catalysts. One of the most important aspects of p-DCB synthesis is the choice of catalyst. The review examines the advantages and disadvantages of various catalysts. In order to improve the selectivity of the process with respect to p-DCB, many studies have been carried out, a summary and analysis of which are presented in this article. Possible mechanisms of catalytic reactions are discussed. The review also discusses the problems of isolating p-DCB from the reaction mass with a description of the main technological methods used to overcome these difficulties. It has been shown that optimization of the process parameters for the production of p-DCB is crucial for increasing the efficiency of its synthesis and reducing production costs.
References
Zanaveskin L.N., Alferova E.A., Shvets V.F. (2009). Selective production of paradichlorobenzene. Part 1. Chemical industry today. (3). 9–16. (in Russ.).
L.A. Oshin, Yu.A. Treger, G.V. Motsarev et al. (1978). Industrial organochlorine products. Directory. M.: Chemistry. (in Russ.).
Zanaveskin L.N., Alferova E.A., Shvets V.F. (2009). Selective production of paradichlorobenzene. Part 1. Chemical industry today. (5), 12–20. (in Russ.).
E. A. Alfyorova (2008) Selective chlorination of benzene to paradichlorobenzene (Ph.D. dissertation). Moscow: D. I. Mendeleev Russian State Technical University. (in Russ.).
Karimov O.Kh., Novak L., Mastobaev B.N. Lokshina E.A., Karimov E.Kh., Kolchin A.V., Chetvertneva I.A., Teptereva G.A., Movsumzade E.M. (2020). Polymer membrane materials: history of appearance, their properties. Stages of development of membrane technologies. Industrial production and use of elastomers. (2). 17–24. https://doi.org/10.24411/2071-8268-2020-10203. (in Russ.).
Udarbe Zamora E.M., Espada-Murao L.A.T. (2024) Dichlorobenzene. Encyclopedia of Toxicology (Fourth Edition) 3, 637–642. https://doi.org/10.1016/B978-0-12-824315-2.00771-5
Linnie M.J., Keatinge M.J. (2000). Int. Biodeterior. Biodegrad, 45, (1-2), 1–13, https://doi.org/10.1016/S0964-8305(00)00034-2.
Ware G.W. (1988). Ortho-, meta-, and para-dichlorobenzene. Reviews of Environmental Contamination and Toxicology. 106, 51–68. https://doi.org/10.1007/978-1-4612-3922-2_5.
Parker D. Bussink J., van de Grampel H. T. et al. (2000). Polymers, High-Temperature Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, https://doi.org/10.1002/14356007.a21_449.pub4.
Samoryadov A.V., Ivanov V.B., Kalugina E.V. (2020). Plasticheskie massy. (5-6). 8–11. https://doi.org/10.35164/0554-2901-2020-5-6-8-11. (in Russ.).
Chen G., Mohanty A.K., Misra M. (2021). Compos. Part B Eng., 209, 108553.
Li S., Wang M., Liu H., Wenli Zhao, Yan Wang, Ping Song, Zhi Wang (2023). Polyphenylene sulfide fabric with improved antibacterial properties and comprehensive performances by new polybenzoxazine based coating for protection applications. Polymer. 270, 125777. https://doi.org/10.1016/j.polymer.2023.125777.
Kim M., Hong S. Y., Bang J. et al. (2021). Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications. Mater. Today Adv. 12, 100186. https://doi.org/10.1016/j.mtadv.2021.100186.
Johänning, F.: Polyphenylene Sulfide (PPS). Kunststoffe international, 10 (2010), S. 107–108.
Diez-Pascual A.M. (2015). Preparation and characterization of polyphenylene sulfide nanocomposites. Manufacturing of Nanocomposites with Engineering Plastics. Elsevier, 127–165. http://dx.doi.org/10.1016/B978-1-78242-308-9.00007-0.
Cleary J.W. (1985). Poly(Phenylene Sulfide). Advances in Polymer Synthesis. Polymer Science and Technology, 31. 173–185. https://doi.org/10.1007/978-1-4613-2121-7_8.
Pat. WO 2007017900, US, 2007.
Lebedev N.N. (1971.) Chemistry and technology of basic organic and petrochemical synthesis. Moscow: Khimiya.
Pat. 1259506 A, CN, 2000.
Pat. 2010100571, JP 2010.
Pat. 102197010 А, JP, 2011.
Pat. 102836731, CN, 2012.
Pat. 4028269, DE,1992.
Pat. 2004107317A, JP, 2004.
Pat. 4727201, US, 1988.
Pat. 4171627, JP, 2004.
Pat. 2002114719, JP 2002.
Pat. WO 9008118, US, 1990.
Rabo J. (1980). Zeolite Chemistry and Catalysis. 1. Moscow: Mir.
Pat. WO2010110163, JP, 2010.
Pardillos, J.; Coq, B.; Figueras, (1989). Isomerization of o-dichlorobenzene over H-mordenite: Effect of the silicon-to-aluminium ratio Applied Catalysis, 51(2), 285–293. https://doi.org/10.1016/S0166-9834(00)80212-2.
Jang, Hyang Ja; Choi, Pyung Ho; Park, Sang-Eon (1995).Vapor-phase chlorination of chlorobenzene over solid-acid catalysts. Bulletin of the Korean Chemical Society, 16(6), 507–511. https://doi.org/10.5012/bkcs.1995.16.6.507.
Singh, A. P. (1998). Selective chlorination of various aromatics over zeolite catalysts Studies in Surface. Science and Catalysis 113. 419–423. https://doi.org/10.1016/S0167-2991(98)80315-7
Mendonca, G. F.; Bastos, A. R.; Boltz, M.; Louis, B.; Pale, P.; Esteves, P. M.; de Mattos, M. C. S. (2013). Electrophilic chlorination of arenes with trichloroisocyanuric acid over acid zeolites. Applied Catalysis, A: General 460–461, 46–51. https://doi.org/10.1016/j.apcata.2013.04.017
Losch, P.; Kolb, J. F.; Astafan, Daou, T. J.; Pinard, L.; Pale, P.; Louis, B. (2016). Eco-compatible zeolite-catalysed continuous halogenation of aromatics. Green Chemistry, 18(17), 4714–4724. https://doi.org/10.1039/C6GC00731G.
Pat. 4990706 А, US, 1991.
Pat. 4849560, US, 1989.
Pat. 4740641, US, 1986.
Pat. 109574789, CN, 2018.
Пат. 2399415 C2, РФ, 2010.
Akhmadullin R.M., Rakov A.V., Musin L.I., Irdinkin S.A., Litvinova I.N., Antipin I.S., Akhmadullina A.G. (2022). Production of para-dichlorobenzene by chlorination of chlorobenzene on a heterogeneous catalyst zeolite NAY. Journal of Applied Chemistry. 95(9), 1162–1168. https://doi.org/10.31857/S0044461822090080. (in Russ.).
van Dijk van Daalen J.J.J., Paerels G.B. Selective halogenation using molecular sieves (1974). Reel. Trav. Chim. Pays-Bas. 93, 72.
Wortel Th.M., Oudijn D., Vleugel C.J., Roelofsen, van Bekkum H. (1979). Selective bromination of halobenzenes using zeolite catalysts. Journal of D.P. Catalysis. 60(1), 110–120. https://doi.org/10.1016/0021-9517(79)90073-3.
Miyake T., Sekizawa K., Hironaka T. et al. 1986. Para-Selective Chlorination of Chlorobenzene on Modified Y-Type Zeolites. Studies in Surface Science and Catalysis 28, 747–754. https://doi.org/10.1016/S0167-2991(09)60943-5.
Pat. 116143580, CN, 2023.
Pat. 1994278462, JP, 1996.
Pat. Patent 103819307 A, CN, 2014.
L.L. Makarshin, Z.P. Pai, V.N. Parmon (2016). Russ. Chem. Rev. 85(2), 139–155. https://doi.org/10.1070/RCR4484.
Pat. 112723987, CN, 2021.
Pat. 115449828, CN, 2022.
Muganlinsky F.F., Treger Yu.A., Lyushin M.M. (1991). Chemistry and technology of organohalogen compounds. Moscow: Khimiya. (in Russ.).
Sukin I.A., Balunov A.I., Tsirlin A.M. (2021). Thermodynamic efficiency of using a separating agent in rectification processes. Theoretical Foundations of Chemical Technology, 55(2), 188–194. (in Russ.).
Pat. 4996380, US, 1991.
Pat. 1259506, CN, 2000.
Pat. WO 2014082537 А1, USA, 2014.
Pat. 004/0144637 A1, US, 22004.
Pat. 2421623, EP, 2012.
Pat. 115806465 A, CN, 2023.
Pat. WO 2016/008175, 2016
He Q.-P. Zou Y., Wang P.-F. Dou X-m. (2021). MFI-Type Zeolite Membranes for Pervaporation Separation of Dichlorobenzene Isomers. ACS Omega. 6(12), 8456–8462. https://doi.org/10.1021/acsomega.1c00214.
Keith Smith, Gamal A. El-Hiti. (2011). Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 13(7), 1579–1608. https://doi.org/10.1039/C0GC00689K.
Copyright (c) 2024 Natalia Yu. Kovaleva, Kseniya A. Shiyanova, Oksana V. Shapovalova, and Yuriy A. Treger

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.