Quantum Chemical Modeling Of Hydrogen Adsorption On Gold And Copper Nanoparticles Deposited On A Graphite Substrate
Abstract
Quantum-chemical modeling of hydrogen adsorption on gold and copper nanoparticles on graphite was conducted within the framework of density functional theory (DFT). As a result, bonding energies of atomic hydrogen with metal clusters on graphite with various defects were calculated, and the change in the density of states of metal atoms during interaction with this adatom was studied. For gold, a greater decrease in the density of states at the metal-graphite interface was observed, while no trends were found for copper. All the above conclusions are consistent with the results of experimental studies.
References
Satterfield C.N. (1996). Heterogeneous Catalysis in Industrial Practice. Т. 2. Krieger Publishing Company.
Chorkendorff I., & Niemantsverdriet H. (2003). Concepts of Modern Catalysis and Kinetics. Wiley-VCH, Weinheim, Germany.
Somorjai G.A. (1994). Introduction to Surface Chemistry and Catalysis. John Wiley, New York.
Ishida T., Murayama T., Taketoshi A., & Haruta M. (2020). Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews, 120(2), 464–525. https://doi.org/10.1021/acs.chemrev.9b00551.
Kijima M., Ohmura K., & Shirakawa H. (1999). Electrochemical synthesis of free-standing polyacetylene film with copper catalyst. Synthetic Metals. 101(1–3), 58. https://doi.org/10.1016/S0379-6779(98)01123-0.
Knizhnik A., Shter G.E., Grader G.S., Reisner G.M., & Eckstein Y. (2003). Interrelation of preparation conditions, morphology, chemical reactivity and homogeneity of ceramic YBCO. Physica C, 400(1–2), 25–35. https://doi.org/10.1016/S0921-4534(03)01311-X.
Николаевич Н.Н. (2018). Технология конструкционных материалов. Анализ поверхности методами атомной физики. М.: Юрайт.
Hammer B., & Nørskov J.K. (1995). Electronic factors determining the reactivity of metal surfaces. Surface Science, 343(3), 211–220. https://doi.org/10.1016/0039-6028(96)80007-0.
Hammer B., & Nørskov J.K. (1996). Erratum to Electronic factors determining the reactivity of metal surfaces [Surface Science 343 (1995) 211]. Surface Science, 359(1–3), 306. https://doi.org/10.1016/0039-6028(96)00588-2.
Giannozzi P., Andreussi O., Brumme T., et al. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648X/aa8f79.
Ozaki T., & Kino H. (2004). Numerical atomic basis orbitals from H to Kr. Physical Review B, 69(19), 195113. https://doi.org/10.1103/PhysRevB.69.195113.
Hammer B., & Nørskov J.K. (2000). Theoretical surface science and catalysis — calculations and concepts. Advances in catalysis, 45, 71–129. https://doi.org/10.1016/S0360-0564(02)45013-4.
Grishin M.V., Gatin A.K., Dokhlikova N.V., Kolchenko N.N., Sarvadii S.Yu., & Shub B.R. (2016). Interaction of hydrogen and oxygen with bimetallic nanostructured coating. Nanotechnologies in Russia, 11(11–12). 727–734. https://doi.org/10.1134/S1995078016060112.
Grishin M.V., Gatin A.K., Dokhlikova N.V., Kolchenko N.N., Sarvadii S.Y., & Shub B.R. (2019). Atomic and electronic structure and chemical properties of coatings based on gold and nickel nanoparticles deposited on graphite. Russian Journal of Physical Chemistry B. 13(1), 9–15. https://doi.org/10.1134/S1990793118060167.
Gatin A.K., Grishin M.V., Dokhlikova N.V., Sarvadii S.Yu., & Shub B.R. (2019). Hydrogenation of HOPG-supported Gold Nanoparticles: Features of Initial Stages. Crystals. 9(7), 350. https://doi.org/10.3390/cryst9070350.
Gatin A.K., Grishin M.V., Dokhlikova N.V., Ozerin S.A., Sarvadii S.Yu., & Shub B.R. (2018). Adsorption Properties of the Film Formed by Gold and Copper Nanoparticles on Graphite. Nanotechnologies in Russia, 13(9–10), 453–463. https://doi.org/10.1134/S1995078018050063.
Dokhlikova N.V., Gatin A.K., Sarvadiy S.Y., Ozerin S.A., Rudenko E.I., Grishin M.V., & Shub B.R. (2021). Modeling hydrogen adsorption on a gold nanoparticle applied on a graphite substrate with various defects. Russian Journal of Physical Chemistry B. 15(4), 732–739. https://doi.org/10.1134/S1990793121040023.
Copyright (c) 2024 Ekaterina I. Rudenko, Nadezhda V. Dokhlikova, Andrei K. Gatin, Sergei A. Ozerin, and Maxim V. Grishin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.