DFT Modeling of Hydrogen Adsorption on Nickel, Platinum and Palladium Nanoparticles Deposited on Graphite Substrates
Abstract
DFT modeling of hydrogen adsorption on Ni, Pt and Pd nanoparticles on graphite has been performed. The binding energies of 13-atomic metal clusters on graphite with various defects with atomic hydrogen were calculated. The change in the density of states of metal atoms during interaction with this atom was studied. The platinum and nickel clusters has the most active top. For a palladium and nickel clusters, the entire surface is reactive. All the above conclusions are consistent with the results of experimental studies.
References
Chorkendorff I., & Niemantsverdriet H. (2003). Concepts of Modern Catalysis and Kinetics. Weinheim: Wiley-VCH.
Yu W., Porosoff M.D. & Chen J.G. (2012). Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chemical Reviews, 112(11), 5780–5817. https://doi.org/10.1021/cr300096b.
van Spronsen M.A., Frenkenb J.W.M. and Groot I.M.N. (2017). Observing the oxidation of platinum. Nature Communications, 8. Article number: 429. https://doi.org/10.1038/s41467-017-00643-z.
Cisternas J., Holmes P., Kevrekidis I.G. and Li X. (2003). CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. // The Journal of chemical physics, 118(7), 3312–3328. https://doi.org/10.1063/1.1531070.
Śmiechowicz I., Kocemba I., Rogowski J., Czupryn, K. (2018). CO oxidation over Pt/SnO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 124(2), 633–649. https://doi.org/10.1007/s11144-018-1383-3.
Baxter R.J. & Hu P.J. (2002). Insight into why the Langmuir-Hinshelwood mechanism is Generally preferred. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. The Journal of Chemical Physics, 116(11), 4379–4381. https://doi.org/10.1063/1.1458938.
Gorobinskiy L., Firsova A., Efimova N., & Korchak V. (2006). Pt-containing pillared clay catalysts for CO oxidation. Kinetics and Catalysis, 47, 395–399. https://doi.org/10.1134/S0023158406030116.
Kurunina G.M., Butov G.M. & Bezbabnykh M.V. (2016). Study of the kinetics of nitrobenzene hydrogenation on 1% pt catalysts containing Eu2O3 and Sm2O3. Successes of Modern Natural Science, 2, 28–31. (in Russ.)
Antonevich I.P., Katok Ya.M. & Nesterova S.V. (2006). Interaction of oxiranylcyclopentanoisoxazolines with hydrobromic acid. Proceedings of the Belarusian State Technological University. Series 4. Chemistry and Technology of Organic Substances, 1(4), 8–11. (in Russ.)
Ferrin P., Kandoi S., Nilekar A.U., & Mavrikakis M. (2012). Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surface Science, 606(7-8), 679–689. https://doi.org/10.1016/j.susc.2011.12.017.
Lebedeva M.V., Ragutkin A.V., Sidorov I.M., Yashtulov N.A. (2011). Reduction of hydrogen absorption into materials of membrane electrode assemblies in hydrogen generators. Fine Chemical Technologies, 18(5), 461–470. https://doi.org/10.32362/2410-6593-2023-18-5-461-470.
Kratzer P., Hammer B., & Nørskov J. (1996). Geometric and electronic factors determining the differences in reactivity of H2 on Cu(100) and Cu(111). Surface Science, 359(1-3), 45–53. https://doi.org/10.1016/0039-6028(96)00309-3.
Giannozzi P., Andreussi O., Brumme T. et al. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79.
Ozaki, T., & Kino, H. (2004). Numerical atomic basis orbitals from H to Kr. Physical Review B, 69(19), 195113. https://doi.org/10.1103/physrevb.69.1951.
Hammer B. & Norskov J.K. (1995). Electronic factors determining the reactivity of metal surfaces. Surface Science, 343(3), 211–220. https://doi.org/10.1016/0039-6028(96)80007-0.
Gatin A., Sarvadiy S., Dokhlikova N., & Grishin M. (2021). Morphology, Electronic Structure, and Adsorption Properties of a Nanostructured Copper-Nickel Coating Applied to the Surface of Highly Oriented Pyrolytic Graphite. Russian Journal of Physical Chemistry B. 15, 367–372. https://doi.org/10.1134/S1990793121030209.
Gatin A.K., Grishin M.V., Sarvadii S.Yu., Slutskii V.G., Kharitonov V.A., Shub B.R., & Kulak A.I. (2018). Kinetics and Catalysis, 59(2), 19–202. https://doi.org/10.1134/S0023158418020088.
Hammer B., & Nørskov J. K. (2000). Theoretical surface science and catalysis—calculations and concepts. Impact of Surface Science on Catalysis, 45, 71–129. https://doi.org/10.1016/s0360-0564(02)45013-4.
Rudenko E.I., Dokhlikova N.V., Gatin A.K., Sarvadii S. Yu., & Grishin M.V. Simulation of hydrogen and oxygen adsorption on palladium nanoparticles located on a graphite substrate with various defects. (2023). Russian Journal of Physical Chemistry B, 17(4), 845–852. https://doi.org/10.1134/s1990793123040164.
Grishin M.V., Gatin A.K., Dokhlikova N.V., Kolchenko N.N., Sarvadii S.Yu., & Shub B.R. (2019). Atomic and Electronic Structure and Chemical Properties of Coatings Based on Gold and Nickel Nanoparticles Deposited on Graphite. Russian Journal of Physical Chemistry B, 13(1), 9–15. https://doi.org/10.1134/S1990793118060167.
Copyright (c) 2024 Ekaterina I. Rudenko, Nadezhda V. Dokhlikova, Andrey K. Gatin, and Maxim V. Grishin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.