Local physico-chemical properties of nanoparticles
Abstract
The processes of interaction of gaseous reagents with coatings formed from metal nanoparticles deposited on pyrolytic graphite have been studied by scanning tunneling microscopy and spectroscopy. It is shown that the physical and chemical properties of the area of contact of nanoparticles with the substrate and the area furthest from the first one may differ. One of the reasons for the observed effects is the transfer of electric charge between the nanoparticles and the substrate.
References
Piumetti M., Bensaid S. (eds.) (2021). Nanostructured Catalysts for Environmental Applications. Springer International Publishing, Cham.
Rostovshchikova T.N., Lokteva E.S., Shilina M.I., Golubina E.V., Maslakov K.I., Krotova I.N., Bryzhin A.A., Tarkhanova I.G., Udalova O.V., Kozhevin V.M., Yavsin D.A., & Gurevich S.A. (2021). Laser electrodispersion of metals for the synthesis of nanostructured catalysts: achievements and prospects. Russian journal of physical chemistry A. 95(3). 451–474. https://doi.org/10.1134/S0036024421030171.
Catherine L., & Olivier P. Gold Nanoparticles for Physics, Chemistry and Biology. (2012). Imperial College Press.
Jaji N.-D., Lee H.L., Hussin M.H., Akil H.Md, Zakaria M.R., & Othman M.B.H. (2020). Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnology Reviews, 9(1), 1456–1480. https://doi.org/10.1515/ntrev-2020-0109
Watanabe Y. (2018). Catalysis of Pt Clusters on Metal Oxide. Editor(s): Klaus Wandelt. Encyclopedia of Interfacial Chemistry, Elsevier. 398–405. https://doi.org/10.1016/B978-0-12-409547-2.12983-X.
Pat. RU 2610383 C1, 2017.
I. General Principles and Applications to Clean and Absorbate-Covered Surfaces / Scanning Tunneling Microscopy (1994). Ed. Guntherodt H.J., Wiesendanger R. Berlin: Springer.
Binnig G., Rohrer H., Berber C., & Weibel E. (1982). Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40(2). 178–180. https://doi.org/10.1063/1.92999.
Meyer E., Hug H.J., Bennewitz R. (2004). Scanning Probe Microscopy. Berlin: Springer.
Hamers R. J., Wang Y. J. (1996). Atomically-resolved studies of the chemistry and bonding at silicon surfaces. Chem. Rev. 96(4). 1261–1290. https://doi.org/10.1021/cr950213k.
Hamers R.J., Tromp R.M., & Demuth J.E. (1986). Surface electronic structure of Si(111)-(7x7) resolved in real space. Phys. Rev. Let. 56(18). 1972–1975. https://doi.org/10.1103/PhysRevLett.56.1972.
Giannozzi P., Baroni S., Bonini N., et al. (2009). Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21. 395502: 1–19. https://doi.org/10.1088/0953-8984/21/39/395502.
Perdew J.P., Burke K., & Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18). 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
Perdew J., Ruzsinsky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., & Burke K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100. 13640: 1–4. https://doi.org/10.1103/PhysRevLett.100.136406.
Vanderbilt D. (1990). Soft self-consistent pseudopotencials in a generalized eigenvalue formalism. Phys. Rev. B. 41(11). 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892.
Henkelman G., Uberuaga B.P., & Jónsson H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22). 9901–9904. https://doi.org/10.1063/1.1329672.
Grishin M.V., Gatin A.K., Dokhlikova N.V., Kirsankin A.A., Shub B.R., Kulak A.I., & Nikolaev S.A. (2015). Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles. Kinetics and catalysis. 56(4). 532–539. https://doi.org/10.1134/S0023158415040084.
https://studfile.net/preview/1867498/page:6/. (accessed 07.10.2024)
Yang Y., Sugino C., & Ohno T. (2012). Band gap of β-PtO2 from first-principles. AIP Advances 2, 022172. https://doi.org/10.1063/1.4733348
Gatin A.K., Grishin M.V., Sarvadii S.Y., Slutskii V.G., Kharitonov V.A., Shub B.R., & Kulak A.I. (2018). Physicochemical properties of nanoparticles: interaction of supported platinum nanoparticles with gaseous reactants. Kinetics and catalysis. 59(2). 196–202. https://doi.org/10.1134/S0023158418020088.
Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al.; Eds. Grigoriev I.S., Meilikhov E.Z. (1991). Physical quantities: reference book. M.: Energoatomizdat.
Copyright (c) 2024 Maxim V. Grishin, Andrey K. Gatin, Nadezhda V. Dokhlikova, Sergey A. Ozerin, Vladislav G. Slutskii, and Vasilii Kharitonov

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.