Oxygen absorption by alcohol-aqueous solutions of the ternary styrene epoxide – hydroquinone – pyridine system

Keywords: Oxidation with molecular oxygen, catalysis, styrene epoxide, hydroquinone, pyridine, tert-butanol, water

Abstract

Epoxides are known as important intermediates in the biotransformation of aromatic and olefinic substances, which catalytically are consumed in the presence of acids and  transition metal salts. The absorption of oxygen in the reactor of a manometric installation by the ternary system styrene epoxide – hydroquinone – pyridine (SE – HQ – Py) was discovered and kinetically studied. The oxidation rate in aqueous tert-butanol at a volume ratio of t-BuOH : H2O = 4 : 1 is approximated by the expression V = k [SE]1[Py]1[HQ]0.3. The value of the effective activation energy, calculated from the temperature dependence of the initial oxidation rate, Ea = 36 ± 3.0  kJ/mol. A study of the consumption of the components of the ternary system using high-performance liquid chromatography, as opposed to SE and HQ, showed that pyridine is not consumed during oxidation. These data indicate a catalytic mechanism of pyridine action in the ternary system.

References

Korn M., Gfrörer W., Filser J.G., & Kessler W. (1994). Styrene-7,8 oxide in blood of workers exposed to styrene. Arch. Toxicol., 68(8), 524–527. https://doi.org/10.1007/S002040050107.

Jágr M., Mráz J., Linhart I., Stánsky V., & Pospišil M. (2007). Synthesis and Characterization of Styrene Oxide Adducts with Cysteine, Hystidine, and Lyzine in Human Globin. Chem. Res. Toxicol., 20(10), 1442–1452. https://doi.org/10/1021/tx700057t.

Jacober S.P., & Hanzlik R.P. (1986). Carbon-13 and Oxygen-18 Kinetic Isotope Effects on Methanolysis of p-nitrostyrene oxide. J. Am. Chem. Soc., 108(7), 1594–1597. https://doi.org/10.1021/ja00267a033.

Parker R.E., & Isaacs N.S. (1959). Mechanisms of Epoxide Reactions. Chem. Rev., 53(4), 737–799. https://doi.org/10.1021/cr50028a006.

Schneider Ch. (2006). Synthesis of 1,2-Difunctionalized Fine Chemicals through Catalytic, Enantioselective Ring-Opening Reactions of Epoxides. Synthesis., 23, 3919–3944. https://doi.org/10.1055/s-2006-950348.

Sabitha G., Satheesh Babu R., Rajkumar M., Srinivas Reddy Ch., & Yadav J.S. (2001). Highly regioselective ring opening of epoxides and aziridines using cerium (III) chloride. Tetrahedron Lett., 42, 3955–3958. https://doi.org/10.1016/S0040-4039(01)00622-0.

Zhou Y.-X., Chen Y.-Z., Hu Y., Huang G., Yu S.-H., & Jiang H.-L.(2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chem. A Eur. J., 20, 1–6. https://doi.org/10.1002/chem. 201404104.

Denisov D.A., Novikov R.A., & Tomilov Y.V. (2021). Donor-acceptor bicyclopropyl configuration- fixed by an additional trimehylene bridge: synthesis and lewis acid-catalyzed tandem three – membered rings opening. Russ Chem. Bull., 70(8), 1568–1574. https://doi.org/10.1007/s11172-021-3253-9.

Reddy L.R., Reddy M.A., Bhanumathi N., & Rao K.R. (2001). Cerium Chloride-catalysed cleavade of epoxides with aromatic amines. Synthesis, 6, 831–832. htpps://doi.org/10.1055/S-2001-13414.

Ollevier Th., & Lavie-Compin G. (2004). Bismuth triflate-catalyzed mild and efficient epoxide opening by aromatic amines under aqueous conditions. Tetrahedron Lett., 45, 49–52. htpps://doi.org/10.1016/j.teties.2003.10.129.

Zhang Y., Wang M., Li P., & Wang L. (2012). Iron-Promoted Tandem Reaction of Anilines with Styrene Oxides via C–C Cleavage for the Synthesis of Quinolines. Org. Lett., 14(9), 2206–2209. https://doi.org/10.1021/o1300391t.

Weil T, Kotke M., Kleiner Ch.M., & Schreiner P.R. (2008). Bronsted Acid - Type Organocatalysis: Alcoholysis of Styrene Oxides. Org. Lett., 10(8), 1513–516. htpps://doi.org/10.1021/o1800149y.

Tan N., Yin Sh., Li Y., Qiu R., Meng Z., Song X., Luo Sh., Au Ch.-T., & Wong W.-Y. (2011). Synthesis and structure of an air-stable organobismuth triflate complex and its use as a high-efficiency catalyst for the ring opening of epoxides in aqueous media with aromatic amines. J. Organomet. Chem., 696(8), 1579–1583. htpps://doi.org/101016/j.jorganchem.2010.12.035.

Krylov A.V., Mokhammad A.K., Yegorova V.V., Borisova E.Ya., Borisova Y.Yu., & Flid V.R. (2012). Solvent effect on regioselectivity of epoxide ring opening in styrene oxide by O- and N- nucleophiles in neutral and basic media. Russ. Chem. Bull., 61(6), 1128–1132. htpps://doi.org/10.1007/S11172-012-0153-z.

Kenji Miyamoto, Kou Okuro, & Hiromichi Ohta (2007). Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from pseudomonas putida S12. Tetrahedron Lett., 48, 3255–3257. htpps://doi.org/10.1016/j.tetlet.2007.03.016.

Morgan K.M., Ellis J.A., Lee J., Fulton A., Wilson S.L., Dupart P.S., & Dastoori R. (2013). Termochemical studies of epoxides and related compounds. J. Org. Chem., 78(2), 4303–4311. htpps://doi.org/10.1021/jo40028671.

Phyu Thin Wai, Pingping Jiang, Yirui Shen, Pingbo Zhang, Qian Gu, & Yan Leng (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. The Royal Society of Chemistry, 9, 38119–38136. htpps://doi.org/10.1039/C9RA05943A.

Jixing Wang, Binqiang Xie, Huan Yang, Xiaorong Yu, Gaoschen Su, Zhu Meng, & Li Wang (2022). Epoxy coating with excellent anticorrosion and PH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 127951. htpps://doi.org/10.1016/j.colsurfa.2021.127951.

Zhijun Li, Yi He, Siming Yan, Hongjie Li, Jiao Chen, Chen Zhang, Changhua Li, Yang Zhao, Yi Fan, & Changhe Guo (2022). A novel silk fibroin-grahene oxide hybrid for reinforcing corrosion protection performance of waterborne epoxy coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 634, 127959. htpps://doi.org/10.1016/j. colsurfa.2021.127959.

Yu Fang, Wang Xiang, & Zhang Zhao (2023). Research progress of nanofillers for epoxy anty-corrosion coatings. Journal of Chinese Society for corrosion and protection. 43, 220–230. htpps://doi.org/10.11902/1005.4537.2022.087.

Zagora A.G., Tkachuk A.I., Terekhov I.V., & Mukhametov R.R. (2021). Methods for chemical modification of epoxy oligomers (review). Tr. VIAM Kompoz. Mater., 7(101), 73–85. htpps://doi.org/10.18577/2307-6046-2021-7-73-85.

Petrov L.V., & Solyanikov V.M. (1999). Acid-Catalyzed Transformation of Styrene Epoxide Accompanied by Oxidative C–C Bond Rupture. Petrol. Chem., 39(2), 89–94.

Petrov L.V., & Solyanikov V.M. (2017). Trends in Oxidation and Buildup of Conversion Products of the Hydroquinone-Styrene Epoxide- p-Toluenesulfonic Acid Ternary System in a Polar Solution. Petrol. Chem., 57(8), 734–738. https://doi.org/10.1134/S0965544117080114.

Eastham A.M., & Darwent B. deB. (1951). The Chemistry of Ethylene Oxide. III. Reaction of Ethylene Oxide in Amine solution. Can J. Chem., 29(7), 585–596. https://cdnsciencepub.com/doi/pdf/10.1139/v51-068.

Eastham A.M. (1952). The Chemistry of Ethylene Oxide. Part IV. The Kinetics of The Reaction of Ethylene Oxide in Pyridine Solution of Hydrogen Halides. J. Chem. Soc. 1936–1945. https://doi.org./10.1039/JR9520001936.

Petrov L.V., Spirin M.G., & Solyanikov V.M. (2023). Oxidation of the Styrene Epoxide - Sulfuric Acid Binary System in an Alcohol Solution. Petrol. Chem., 63(4), 421–427. https://doi.org/10.31857/S0028242123020053.

Petrov L.V., Psikha B.L., & Spirin M.G. (2021). Identification of phenylmethylene in alcohol-water solutions in the presence of pyridine and hydrogen peroxide. Russ Chem. Bull., 70(8), 1560-1567. https://doi.org/10.1007/S11172-021-3252-X.

Petrov L.V., & Solyanikov V.M. (2018). Copper(II) Chloride-Catalyzed Oxidation of a Styrene Oxide-Aniline Binary System in a Polar Solvent. Russ. J. Phys. Chem. B., 12(6), 1003–1007. https://doi.org/10.1134/S1990793118060179

Published
2024-12-13
How to Cite
Petrov, L. V., Psikha, B. L., & Solyanikov, V. M. (2024). Oxygen absorption by alcohol-aqueous solutions of the ternary styrene epoxide – hydroquinone – pyridine system. Chemical Safety Science, 8(2), 128 - 139. https://doi.org/10.25514/CHS.2024.2.27009
Section
Chemical hazard sources. Hazardous chemical substances