Evaluation of the structure and biological activity of the complex of copper (II) acetate with (4-aminobenzo-15-crown-5)-4-pyridinecarboxalimine
Abstract
The work is devoted to the prediction and experimental study of the structure and biological activity of the complex of copper(II) acetate with (4-aminobenzo-15-crown-5)-4-pyridinecarboxalimine. At the first stage of the work, the comparative thermodynamic stability of structures with different coordination of the crown ether ligand on the copper atom was assessed. The evaluation was carried out regarding the total free energy of (4-aminobenzo-15-crown-5)-4-pyridinecarboxalimine and copper(II) acetate Cu(AcO)2 using the DFT method in the Priroda 20 program. Prediction of the spectrum of biological activity, as well as assessment of the probable toxicity of these compounds, was carried out using the PASS and GUSAR computer programs available on the Internet. An in vitro study on cell lines showed the antitumor effect of the synthesized compound. In addition, an antibacterial effect was discovered against gram-positive (Staphylococcus aureus, Micrococcus luteus) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) microorganisms.
References
Tso, W. W., Fung, W.-P. & Tso, M. Y. (1981). Variability of crown ether toxicity. J. Inorg. Biochem. 14(3), 237. https://doi.org/10.1016/S0162-0134(00)80003-3.
Tso, W.W. & Fung, W.-P. (1980). Intracellular potassium level: possible trigger for bacterial logarithmic growth. Inorganica Chimica Acta. 46, 33. https://doi.org/10.1016/S0020-1693(00)84130-4.
Leevy, W.M., Weber, M.E., Gokel, M.R., Hughes-Strange, G.B., Daranciang, D.D., Ferdani, R. & Gokel, G.W. (2005). Correlation of bilayer membrane cation transport and biological activity in alkyl-substituted lariat ethers. Organic&Biomolecular Chemistry. 9(3), 1647. https://doi.org/10.1039/B418194H.
Sadovskaya, N.Yu., Glushko, V.N., Blokhina, L.I. & Retivov, V.M. (2020). Biological activity of crown ethers and their metal complexes. Khimicheskaya Bezopasnost’ = Chemical Safety, 4(2), 80–100 (in Russ). https://doi.org/10.25514/CHS.2020.2.18006.
.Sadovskaya N.Yu., Glushko V.N., Retivov V.M., Belus S.K., Grokhovsky V.V. (2015) Synthesis and properties of macroheterocyclic azomethines based on 4-aminobenzo-15-crown-5. Journal of General Chemistry, 85(12), 2771–2777 https://doi.org/10.1134/S1070363215120191.
Shubert, V.A. & Zwier, T.S. (2007). IR−IR−UV Hole-Burning: Conformation Specific IR Spectra in the Face of UV Spectral Overlap. J. Phys. Chem. A, 111(51), 13283–13286. https://doi.org/10.1021/jp0775606.
Laikov, D.N. (1997). Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chemical Physics Letters, 281, 151–156. https://doi.org/10.1016/S0009-2614(97)01206-2.
Logacheva, N.M., Baulin, V.E., Tsivadze, A. Yu. & Pyatova, E.N. (2009). Ni(II), Co(II), Cu(II), Zn(II) and Na(I) complexes of a hybrid ligand 4′-(4‴-benzo-15-crown-5)-methyloxy-2,2′:6′,2″-terpyridine. Dalton Transactions, 14, 2482–2489. https://doi.org/10.1039/b819805e.
Semyonov O., Lyssenko K.A., Safin D.A. (2019). Copper(II) acetate structures with benzimidazole derivatives. Inorganica Chimica Acta, 488, 238–245.
Carlin, R.L. (2012). Magnetochemistry. 5.4. Р. 77–82. https://doi.org/10.1007/978-3-642-70733-9.
Ahmed, I.Y. & Abu-Hijleh, A.L. (1982). Monomer and dimer complexes of copper(II) acetate with pyridine and picolines. Part I. Synthesis and characterization. Inorganica Chimica Acta, 61, 241–246. https://doi.org/10.1016/S0020-1693(00)89147-1.
Alexandru, M.-G., Cirkovic Velickovic, T., Jitaru, I., Grgurić-Sipka, S. & Draghici, С. (2010). Synthesis, characterization and antitumor activity of Cu(II), Co(II), Zn (II) and Mn(II) complex compounds with aminothiazole acetate derivative. Open Chemistry, 8(3), 639–645. https://doi.org/10.2478/s11532-010-0022-2.
Barwiolek, М., Kaczmarek-Kedziera, А., Muziol, Т., Jankowska, D., Jezierska, J. & Bieńko, A.(2020). Dinuclear Copper(II) Complexes with Schiff Bases Derived from 2-Hydroxy-5-Methylisophthalaldehyde and Histamine or 2-(2-Aminoethyl)pyridine and Their Application as Magnetic and Fluorescent Materials in Thin Film Deposition. Int. J. Mol. Sci., 21(13), 4587. https://doi.org/10.3390/ijms21134587.
Evans, W. J., Hain, J.H., Broomhall-Dillard, R.N.R. & Ziller, J.W. (1999). STRUCTURAL STUDIES OF THE COPPER(II) ACETATE COMPLEXES Cu(О2CCH3)2(pyridine)3 AND Cu6(μ-O2CCH3)4(μ4-O2CCH3)2(μ-OCMe3)6. Journal of Coordination Chemistry, 47, 199–209. https://doi.org/10.1080/00958979908023054.
Yakovlev, D.S., Sultanova, K.T., Zolotova, E.A., Gasaynieva, A.G. & Spasov, A.A. Optimization of the MTT test to determine the cytotoxicity of new chemical compounds on the MCF-7 cell line. Volgogradskiy nauchno-meditsinskiy zhurnal = Volgograd scientific and medical journal. 65(1), 8–61 (in Russ). https://doi.org/10.24412/1995-7225-2020-1-58-61.
Jezierska, J., Kokozay, V. & Ożarowski, A. EPR studies of spin-spin interactions between Cu(II) centers in dimeric, hexameric and homo- and heteronuclear tetrameric complexes. Res Chem Intermed 33, 901–914 (2007). https://doi.org/10.1163/156856707782169381.
Copyright (c) 2024 Aleksey V. Drobyshev, Natalia Yu. Sadovskaya, Valentina N. Glushko, Evgenia I. Kozhukhova, Svetlana K. Belus, Vasiliy M. Retivov, Alexander V. Akimov, and Alexander S. Shmakov

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.