Byproduct Analysis from Gamma Radiolysis of 1,2,4-Trichlorobenzene in Benzene

Keywords: trichlorobenzene, dechlorination, gamma radiolysis, chlorinated benzenes, POPs

Abstract

In this study, we investigated the degradation properties of trichlorobenzene (TCB) as a model compound for hexachlorobenzene (HCB), utilizing benzene as the solvent, with the purpose of understanding the efficiency and pathways of gamma radiolysis in the remediation of persistent organic pollutants (POPs). Gamma radiation from a 60Co source was employed, and mainly qualitative changes in the sample solutions were analyzed using gas chromatography-mass spectrometry (GC-MS). Our findings demonstrate a 99,1% conversion of TCB, resulting in the formation of various less chlorinated benzenes (CBs) and other chlorinated and non-chlorinated organic compounds. Specifically, 39 distinct compounds were identified in the TCB + benzene system based on their mass spectra. By-products such as, 3,5-dichlorobiphenyl, 4,4'-dichloro-1,1'-biphenyl, and 3,4-dichloro-1,1'-biphenyl (PCBs) exhibit significant carcinogenic hazards. These findings underscore the potential health risks associated with the radiolytic degradation process of POPs in benzene. The G value for TCB degradation in benzene exhibits 5,47 molecules/100 eV at an absorbed dose of 3,0 kGy. However, the G value subsequently declines to 0,19 molecules/100 eV with higher doses, a trend that reflects not only the saturation of the reactive species' capacity but also the diminishing concentration of TCB, limiting further degradation despite increased radiation exposure.

References

Olutona, G. O., Olatunji, S. O., & Obisanya, J. F. (2016). Downstream assessment of chlorinated organic compounds in the bed-sediment of Aiba Stream, Iwo, South-Western, Nigeria. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-1664-0.

Wang, Z., Adu-Kumi, S., Diamond, M. L., Guardans, R., Harner, T., Harte, A., Kajiwara, N., Klánová, J., Liu, J., Moreira, E. G., Muir, D. C. G., Suzuki, N., Pinas, V., Seppälä, T., Weber, R., & Yuan, B. (2022). Enhancing scientific support for the Stockholm Convention’s implementation: An analysis of policy needs for scientific evidence. Environmental Science & Technology, 56(5), 2936–2949. https://doi.org/10.1021/acs.est.1c06120.

Reed, L., Buchner, V., & Tchounwou, P. B. (2007). Environmental Toxicology and Health Effects Associated with Hexachlorobenzene Exposure. Reviews on Environmental Health, 22(3). https://doi.org/10.1515/reveh.2007.22.3.213.

Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.962619.

Li, C., Yang, L., Liu, X., Yang, Y., Qin, L., Li, D., & Liu, G. (2021). Bridging the Energy Benefit and POPs Emission Risk from Waste Incineration. ˜the Innovation, 2(1), 100075. https://doi.org/10.1016/j.xinn.2020.100075.

Malik, B., Pirzadah, T. B., & Hakeem, K. R. (2022). Phytoremediation of persistent organic pollutants (POPs). In Elsevier eBooks (pp. 415–436). https://doi.org/10.1016/b978-0-323-89874-4.00010-8.

Hussain, M., Mahtab, M. S., & Farooqi, I. H. (2020). The applications of ozone-based advanced oxidation processes for wastewater treatment: A review. Advances in Environmental Research, 9(3), 191–214. https://doi.org/10.12989/aer.2020.9.3.191.

Takagi, K. (2020). Study on the biodegradation of persistent organic pollutants (POPs). Nippon Nōyaku Gakkaishi, 45(2), 119–123. https://doi.org/10.1584/jpestics.j19-06.

Zhu, K., Zhu, H., Feng, S., Fu, J., Guo, D., Sun, Q., Huang, L., & Hao, X. (2019). Electrochemical degradation of chemical wastewater by anodic oxidation process. IOP Conference Series. Earth and Environmental Science, 371(3), 032018. https://doi.org/10.1088/1755-1315/371/3/032018.

Ansari, A., & Nematollahi, D. (2020). Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism. Applied Catalysis. B, Environmental, 261, 118226. https://doi.org/10.1016/j.apcatb.2019.118226.

Almirall, X. O., Yagüe, N. S., Gonzalez-Olmos, R., & Díaz-Ferrero, J. (2022). Photochemical degradation of persistent organic pollutants (PCDD/FS, PCBS, PBDES, DDTS and HCB) in hexane and fish oil. Chemosphere, 301, 134587. https://doi.org/10.1016/j.chemosphere.2022.134587.

Nguyen, V., Smith, S. M., Wantala, K., & Kajitvichyanukul, P. (2020). Photocatalytic remediation of persistent organic pollutants (POPs): A review. Arabian Journal of Chemistry, 13(11), 8309–8337. https://doi.org/10.1016/j.arabjc.2020.04.028.

Yang, R., Wang, Z., Guo, J., Qi, J., Liu, S., Zhu, H., Li, B., & Liu, Z. (2024). Catalytic degradation of antibiotic sludge to produce formic acid by acidified red mud. Environmental Research, 245, 117970. https://doi.org/10.1016/j.envres.2023.117970.

Tait, P. W., Brew, J., Che, A., Costanzo, A., Danyluk, A., Davis, M., Khalaf, A., McMahon, K., Watson, A., Rowcliff, K., & Bowles, D. (2020). The health impacts of waste incineration: a systematic review. Australian and New Zealand Journal of Public Health, 44(1), 40–48. https://doi.org/10.1111/1753-6405.12939.

M, D., A, S., N, S., & A, J. (2002). Biotechnology and bioremediation: successes and limitations. Applied Microbiology and Biotechnology, 59(2–3), 143–152. https://doi.org/10.1007/s00253-002-1024-6.

Mukherjee, A., Debnath, B., & Ghosh, S. K. (2016). A Review on Technologies of Removal of Dioxins and Furans from Incinerator Flue Gas. Procedia Environmental Sciences, 35, 528–540. https://doi.org/10.1016/j.proenv.2016.07.037

Paz-Alberto, A. M., & Sigua, G. C. (2013). Phytoremediation: a green technology to remove environmental pollutants. American Journal of Climate Change, 02(01), 71–86. https://doi.org/10.4236/ajcc.2013.21008.

Morrison, C. M., Hogard, S., Pearce, R., Mohan, A., Pisarenko, A. N., Dickenson, E. R. V., Von Gunten, U., & Wert, E. C. (2023). Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. Environmental Science & Technology, 57(47), 18393–18409. https://doi.org/10.1021/acs.est.3c00538.

Gaur, N., Narasimhulu, K., & Y, P. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. https://doi.org/10.1016/j.jclepro.2018.07.076.

Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2023). A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Applied Catalysis. B, Environmental, 328, 122430. https://doi.org/10.1016/j.apcatb.2023.122430.

Al-Nuaim, M. A., Alwasiti, A. A., & Shnain, Z. Y. (2022). The photocatalytic process in the treatment of polluted water. Chemical Papers/Chemické Zvesti, 77(2), 677–701. https://doi.org/10.1007/s11696-022-02468-7.

Gaur, N., Dutta, D., Singh, A., Dubey, R., & Kamboj, D. V. (2022). Recent advances in the elimination of persistent organic pollutants by photocatalysis. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.872514.

Karimov, S., Abdullayev, E., Gurbanov, M., Gasimzada, L., & Feyziyeva, S. (2024b). Gamma Irradiation-Induced Degradation of hexachlorobenzene in methanol: Kinetics, mechanism and Dehalogenation Pathway. Radiation Physics and Chemistry, 112288. https://doi.org/10.1016/j.radphyschem.2024.112288.

Jiménez-Becerril, J., Moreno-López, A., & Jiménez-Reyes, M. (2016). Radiocatalytic degradation of dissolved organic compounds in wastewater. Nukleonika, 61(4), 473–476. https://doi.org/10.1515/nuka-2016-0077.

Hina, H., Nafees, M., & Ahmad, T. (2021). Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon, 7(2), e05972. https://doi.org/10.1016/j.heliyon.2021.e05972.

Karimov, S., Abdullayev, E., Millet, M., & Gurbanov, M. (2024). Radiolytic degradation of 1,2,4-trichlorobenzene (TCB) in some organic solvents by gamma rays: The kinetic properties of complete dechlorination of TCB and its pathway. Heliyon, 10(10), e31547. https://doi.org/10.1016/j.heliyon.2024.e31547.

Laverne, J., & Araos. (1999). Radical production in the radiolysis of liquid benzene. Radiation Physics and Chemistry, 55(5–6), 525–528. https://doi.org/10.1016/s0969-806x(99)00239-x.

Laverne, J. A., & Araos, M. S. (2002). Heavy ion radiolysis of liquid benzene. The Journal of Physical Chemistry. A, 106(46), 11408–11413. https://doi.org/10.1021/jp021401z.

Taghipour, F., & Evans, G. J. (1997). Radiolytic dechlorination of chlorinated organics. Radiation Physics and Chemistry, 49(2), 257–264. https://doi.org/10.1016/s0969-806x(96)00065-5.

Alkhuraiji, T. S., Boukari, S. O., & Alfadhl, F. S. (2017). Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: Effects of reagent. Journal of Hazardous Materials, 328, 29–36. https://doi.org/10.1016/j.jhazmat.2017.01.004.

International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. (2012). Vol. 100 F. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012. (accessed 01.11.2024).

Islam, R., Kumar, S., Karmoker, J., Kamruzzaman, M., Rahman, M. A., Biswas, N., Tran, T. K. A., & Rahman, M. M. (2018). Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives. Environmental Technology & Innovation, 12, 115–131. https://doi.org/10.1016/j.eti.2018.08.002.

Safety Data Sheet of 3-Methylcyclohexanol. (n.d.). https://www.chemicalbook.com/msds/3-methylcyclohexanol.pdf. (accessed 01.11.2024).

Safety Data Sheet of Cyclohexanol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC147680025&countryCode=US&language=en. (accessed 02.11.2024).

Safety Data Sheet of Methylcyclohexane. (n.d.). https://www.carlroth.com/medias/SDB-9913-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMjYyNjl8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNTcvaDNmLzg5NjQ5ODM3ODM0NTQucGRmfGVhZmJlZjIxNWUxZjU5ZmQ0MjJkNjRkMzI2MzM5MjkzOTg0NTNhM2Y4. (accessed 02.11.2024).

Safety Data Sheet of Ethylcyclopentane. (n.d.). https://www.chemicalbook.com/msds/ethylcyclopentane.pdf. (accessed 02.11.2024).

Safety Data Sheet of Cyclohexanone. (n.d.). https://www.fishersci.com/msdsproxy%3FproductName%3DC5504%26productDescription%3DCYCLOHEXANONE%2BPURIFIED%2B4L%26catNo%3DC550-4%26vendorId%3DVN00033897%26storeId%3D10652. (accessed 04.11.2024).

Safety Data sheet of 2-Chlorophenol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC180991000&countryCode=US&language=en. (accessed 02.11.2024).

Safety data sheet of 2,5-Dichlorophenol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC113580500&countryCode=US&language=en. (accessed 02.11.2024).

Safety Data Sheet of Phenol. (n.d.). https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-p/S25463.pdf. (accessed 04.11.2024).

Safety Data Sheet of Benzaldehyde. (n.d.). https://www.carlroth.com/medias/SDB-NE01-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTU1MTl8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oODQvaGYzLzg5NzQzOTY2ODYzNjYucGRmfDQ2M2Y0MzhiNGVlOThiOWUxNmEyMDZhNDM5NjM2NjgwYzQ2YTJhNTRlYWU3ZmJmNGYzYzAwNzYwMjg4NzhkYmU. (accessed 02.11.2024).

Safety Data Sheet of Toluene. (n.d.). https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-t/S25611.pdf. (accessed 01.11.2024).

Safety Data Sheet of 1,2-Dichlorobenzene. (n.d.). https://www.fishersci.com/msdsproxy%3FproductName%3DO22311%26productDescription%3DO-DICHLOROBENZENE%2BCERT%2B1L%26catNo%3DO2231-1%26vendorId%3DVN00033897%26storeId%3D10652. (accessed 02.11.2024).

Safety Data Sheet of 1,3-Dichlorobenzene. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC151180050&productDescription=1%2C3-DICHLOROBENZENE+98%25+5ML&vendorId=VN00032119&countryCode=US&language=en. (accessed 02.11.2024).

Safety Data Sheet of 1,4-Dichlorobenzene. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC113190010&productDescription=1%2C4-ICHLOROBENZENE%2C+97%25+1KG&vendorId=VN00032119&countryCode=US&language=en. (accessed 04.11.2024).

Safety Data Sheet of Chlorobenzene. (n.d.). https://www.carlroth.com/medias/SDB-KK01-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyODgxODV8YXBwbGljYXRpb24vcGRmfGg1My9oNmYvOTE0OTAxMzI5NTEzNC9TREJfS0swMV9HQl9FTi5wZGZ8MmE3Njc5NTQ3MzIwZTZkNTBhMTU4OTNlNjBiNmZiOGQ0YTU1OTEyMzY4M2JjMmJjM2I1YzViYjUyNTU2ZGUxMQ. (accessed 02.11.2024).

Safety Data Sheet of 1,2,4-Triphenylbenzene. (n.d.). https://www.chemicalbook.com/msds/1-2-4-triphenylbenzene.pdf. (accessed 02.11.2024).

Safety Data Sheet of Triphenylene. (n.d.). https://www.chemicalbook.com/msds/triphenylene.htm. (accessed 05.11.2024).

Safety Data Sheet of 1,1’-Biphenyl. (n.d.). https://www.carlroth.com/medias/SDB-3216-AU-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTkwMTV8YXBwbGljYXRpb24vcGRmfGFHSmxMMmd6T1M4NU1UUTBNRFk0T0RZMk1EYzRMMU5FUWw4ek1qRTJYMEZWWDBWT0xuQmtaZ3w3N2Y3NDE1OWEzMTJjYTBmMzcwNWQyNzI1OWJlZDBhZTYyMmZkYTBiN2M1NzM5MDNkM2UzMjdmZmU5ZmUyYzkz. (accessed 02.11.2024).

Safety Data Sheet of 1,3-Dimethylcyclopentane. (n.d.). https://www.chemicalbook.com/msds/1-3-dimethylcyclopentane.htm. (accessed 02.11.2024).

Safety Data Sheet of n-Heptane. (n.d.). https://www.carlroth.com/medias/SDB-7566-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyOTEzMDN8YXBwbGljYXRpb24vcGRmfGgxMy9oZDYvOTE0NzQyMzAzMTMyNi9TREJfNzU2Nl9HQl9FTi5wZGZ8ZDcxZjY1MGFhNGY4OWQwNzAzNjhiZmRmMDAxNTE1MmFjOWZjZDUzZjk4YTdhMmU4NjY3ODVmMDM3NmJkMTA5Mg. (accessed 02.11.2024).

Safety Data Sheet of Hexan-2-one. (n.d.). https://www.chemos.de/import/data/msds/GB_en/591-78-6-A0225886-GB-en.pdf. (accessed 02.11.2024).

Safety Data Sheet of Hexan-3-one. (n.d.). https://bg.cpachem.com/msds?num=SB44754&dnl=sd_-_3-Hexanone_CAS_589-38-8_%28SB44754%29_%28EU%29.pdf. (accessed 02.11.2024).

Safety Data Sheet of Hexan-2-ol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC156290100&productDescription=2-HEXANOL%2C+99%25+10GR&vendorId=VN00032119&countryCode=US&language=en. (accessed 02.11.2024).

Safety Data Sheet of Hexan-3-ol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AAA1967209&productDescription=1-HEXEN-3-OL+98%25+10G&vendorId=VN00024248&countryCode=US&language=en. (accessed 02.11.2024).

Safety Data Sheet of 2,4-Dimethyl-3-hexanol. (n.d.). https://www.chemicalbook.com/msds/3-4-dimethyl-3-hexanol.htm. (accessed 04.11.2024).

Agilent. (2019, March 25). Safety Data Sheet Acc. to OSHA HCS. https://www.agilent.com/cs/library/msds/RTP-002_NAEnglish.pdf. (accessed 02.11.2024).

Chem Service inc. (2019, May 22). SAFETY DATA SHEET of 3,5-Dichlorobiphenyl. http://cdn.chemservice.com/product/msdsnew/External/English/BZ-14%20English%20SDS%20US.pdf. (accessed 04.11.2024).

Stockholm Convention. (n.d.). Stockholm Convention, protecting human health and the environment from persistent organic pollutants. https://www.pops.int/Implementation/IndustrialPOPs/PCB/Overview/tabid/273/Default.aspx. (accessed 04.11.2024).

Published
2024-12-13
How to Cite
Karimov, S., Abdullayev, E., & Gurbanov, M. (2024). Byproduct Analysis from Gamma Radiolysis of 1,2,4-Trichlorobenzene in Benzene . Chemical Safety Science, 8(2), 140 - 153. https://doi.org/10.25514/CHS.2024.2.27010
Section
Technologies for elimination of chemical hazards