Carbon dioxide in the atmosphere, problems of reducing its concentration
Abstract
The annual increase in CO2 emissions continues to progress and leads to climate change. To achieve the goals set in the Paris Climate Agreement, measures to capture CO2 are needed in addition to reducing carbon dioxide emissions. This article describes and discusses modern CO2 capture methods. Attention is paid to the problems of natural ways of CO2 absorption by sea water and in the process of photosynthesis. The technologies for capturing carbon dioxide in industrial enterprises, based on the absorption of CO2 by aqueous solutions of various amines, are considered in detail. A section on the toxicity of amines and their transformation products in the atmosphere is presented. The lifetime of amines in the atmosphere was assessed. Schemes of atmospheric reactions of methylamines, dimethylamines and trimethylamines are given.
References
Agusti-Panareda, Anna, Jerome Barre, Sebastien Massart, et al (2023). Technical Note: The CAMS Greenhouse Gas Reanalysis From 2003 To 2020. Аtmospheric chemistry and physics, 23(6), ACP, 23, 3829–3859. https://doi.org/10.5194/acp-23-3829-2023.
Kammerer S.,Borho I.,Jung J., & Schmidt M.S. (2023). Review: CO2 capturing methods of the last two decades, Int. J. Env. Sc.Tech. 20, 8087–8104. https://doi.org/10.1007/s13762-022-04680-0
IEA.CO2 Emissions From Fuel Combustion 2018. https://de.statista.comstatistik/daten/studie/167957/umfrage/verteilung-der-co-emissionen-weltweit-nach-bereich/. (accessed 20.05.2024).
Fischedick, M., Görner, K., & Thomeczek, M. (2015). CO2: Abtrennung, Speicherung, Nutzung: Ganzheitliche Bewertung im Bereich von Energiewirtschaft und Industrie. SpringerLink. https://doi.org/10.1007/978-3-642-19528-0
Ivanov, P.S. et al. (2015). Analysis of the effects of coal combustion on the subsurface and the atmosphere. Journal of Engineering Research, (6), 20–30. (in Russ.).
Gorbunov, D.S. et al. (2015). Modeling of carbon dioxide capture by the ocean and its impact on climate. Moscow: Publishing House of the Russian Academy of Sciences. P. 56–58. (in Russ.).
A short reference book of physico-chemical quantities. (2003). Tenth edition. Edited by Ravdel A.A. & A.M. Ponomareva. St. Petersburg: Ivan Fedorov. P. 240 (in Russ.).
Yuan-Hui, Li, & Tien-Fung, Tsui. (1971). The Solubility of CO2 in Water and Sea Water, J. Geophys. Res., 76(18), 4203–4207. https://doi.org/10.1029/JC076i018p04203.
Murray, Charles Nicholas & Joseph P. Riley. (1971). The solubility of gases in distilled water and sea water—II. Oxygen. Deep Sea Research and Oceanographic Abstracts. 18(5), 533–541. https://doi.org/10.1016/0011-7471(71)90077-5.
Weiss, R.F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3). 203–215. https://doi.org/10.1016/0304-4203(74)90015-2
Campbell, Neil A.; B. Williamson; & R. J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. P. 203–209.
Huntingford, C., Atkin, O.K., Martinez-de la Torre, A. et al. (2017). Implications of improved representations of plant respiration in a changing climate. Nat. Commun., 8, 1602. https://doi.org/10.1038/s41467-017-01774-z.
Madejski, P., Chmiel, K., Subramanian, N., Kus T. (2022) Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 15(3). 887. https://doi.org/10.3390/en15030887.
Fagerlund, J., Zevenhoven, R., Thomassen, J., Tednes, M., Abdollahi, F., Thomas, L., Nielsen, C. J., Mikoviny, T., Wisthaler, A., Zhu, L., Biliyok, C., & Zhurkin, A. (2021). Performance of an amine-based CO2 capture pilot plant at the Forum Oslo Varme Waste to Energy plant in Oslo, Norway. International J. Greenhouse Gas Control, 106, 103242 https://doi.org/10.1016/j.ijggc.2020.103242
Schwister, K., & Leven, V. (2020), Verfahrenstechnik für Ingenieure: Ein Lehr- und Ǔbungsbuch (mit umfangreichem Zusatzmaterial), 4, aktualisierte und, erweiterte. Hanser, Carl scinexx, Das Wissensmagazin, Р. 34. ISBN: 9783446461369.
Ishutina E.O., Ishutina E.O., & Kustikova M.A. (2022). Analysis of liquid solvents for carbon dioxide capture. Endless light in science, P. 221–225. (in Russ.).
Vega, F, Sanna, A, Navarrete, B, Maroto-Valer, MM & Cortés, VJ (2014). Degradation of amine-based solvents in CO2 capture process by chemical absorption. Greenhouse Gases: Science and Technology, 4(6), 707–733. https://doi.org/10.1002/ghg.1446.
Liu, A.-H.; Ma, R.; Song, C.; Yang, Z.-Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y.-N.; Yu, B.; & Song, Q.-W. (2012). Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angewandte Chemie International Edition , 51(45), 11306–11310. https://doi.org/10.1002/anie.201205362.
Salov, B.V. Amines. Chemical encyclopedia: in 5 volumes. Ch. ed. I. L. Knunyants. - M.: Soviet Encyclopedia, 1988. ISBN 5-85270-008-8.
Greim, H., Bury, D., Klimisch, H. J., Oeben-Negele, M., & Ziegler-Skylakakis, K. (1998). Toxicity of aliphatic amines: structure-activity relationship. Chemosphere, 36(2), 271–295. https://doi.org/10.1016/S0045-6535(97)00365-2.
Hewitt, C.N., & Roy, M. (1967). Harrison, Tropospheric concentrations of the hydroxyl radical—a review. Atmospheric Environment. 19(4). 545–554. https://doi.org/10.1016/0004-6981(85)90033-2
Tan, W., Zhu, L, Mikoviny, T., Nielsen, C.J., et al. (2018). Theoretical and Experimental Study on the Reaction of tert-Butylamine with OH Radicals in the Atmosphere. J. Phys Chem A. 122(18), 4470–4480. https://doi.org/10.1021/acs.jpca.8b01862.
Chang, C.T., Liu, T.H., & Jeng, F.T. (2004). Atmospheric concentrations of the Cl atom, ClO radical, and HO radical in the coastal marine boundary layer. Environ Res. 94(1), 67–74. https://doi.org/10.1016/j.envres.2003.07.008.
Kit M. Williams (2002). Climate Change Information. Published by UNEP and UNFCCC. Р. 55.
Mikoviny, T.; Nielsen, Claus J.; Tan, Wen; et al, Ambient Measurements of Amines by PTR-QiTOF: Instrument Performance Assessment and Results from Field Measurements in the Vicinity of TCM. Mongstad. Energy Procedia. 114, 1017–1021 https://doi.org/10.1016/j.egypro.2017.03.1246.
Zhu, Liang, Mikoviny, T., Wisthaler, A., & Nielsen, C. (2017). A Sampling Line Artifact in Stack Emission Measurement of Alkanolamine-enabled Carbon Capture Facility: Surface Reaction of Amines with Formaldehyde. Energy Procedia. 114, 1022 –1025. https://doi.org/10.1016/j.egypro.2017.03.1247.
Antonsen, Simen Gjelseth; Bunkan, Arne Joakim Coldevin; et al (2017). Atmospheric Chemistry of tert-butylamine and AMP. Energy Procedia, 114, 1026–1032. https://doi.org/10.1016/j.egypro.2017.03.1248.
Bunkan, Arne Joakim Coldevin; Mikoviny, Tomas; Nielsen, Claus Jørgen; et al, (2016). Experimental and Theoretical Study of the OH-Initiated Photo-oxidation of Formamide. J. Phys. Chem. A., 120(8), 1222–1230. https://doi.org/10.1021/acs.jpca.6b00032.
Bunkan, A.J., Hetzler, J., Mikoviny, T., Wisthaler, A., Nielsen, C.J., & Olzmann M. (2015) The reactions of N-methylformamide and N,N-dimethylformamide with OH and their photo-oxidation under atmospheric conditions: experimental and theoretical studies. Phys Chem Chem Phys, (10), 59. https://doi.org/10.1039/C4CP05805D.
Zhu, L., Schade, G.W., & Nielsen, C.J. (2013) Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities. Environ Sci Technol. 47(24), 14306–14314. https://doi.org/10.1021/es4035045.
Tang, Yizhen & Nielsen, Claus Jørgen (2013). Theoretical Study on the Formation and Photolysis of Nitrosamines (CH3CH2NHNO and (CH3CH2)(2)NNO) under Atmospheric Conditions. J. Phys. Chem. A. 117(1). 126–132. https://doi.org/10.1021/jp307812m.
Rozenberg, Mark; Loewenschuss, Aharon & Nielsen, Claus Jørgen (2012). H-Bonded Clusters in the Trimethylamine/Water System: A Matrix Isolation and Computational Study. J. Phys. Chem. A, 116(16), 4089–4096. https://doi.org/10.1021/jp3020035.
Crutzen, P., & Fishman, J. (1977). Average concentrations of OH in the troposphere, and the budgets of CH₄, CO, H₂ and CH₃CCl₃. Geophys. Res., 4(8) 321–324. https://doi.org/10.1029/GL004i008p00321.
Onel, L.; Thonger, L.; Blitz, M.A.; Seakins, P.W.; Bunkan, Arne Joakim Coldevin & Solimannejad, Mohammad (2013). Gas-Phase Reactions of OH with Methyl Amines in the Presence or Absence of Molecular Oxygen. An Experimental and Theoretical Study. J. Phys. Chem. A., 117(41), 10736–10745. https://doi.org/10.1021/jp406522z.
Atkinson, R.; Perry, R.A.; & Pitts, J.N., Jr. (1978). Rate Constants for the Reactions of the OH Radical with (CH3)2NH, (CH3)3N, and C2H5NH2 over the Temperature Range 298-426°K. J. Chem. Phys. 68, 1850–1853, https://doi.org/10.1063/1.435906.
Butkovskaya, N.I.; & Setser, D.W. (2016). Branching Ratios and Vibrational Distributions in Water-Forming Reactions of OH and OD Radicals with Methylamines. J. Phys. Chem. A. 120(34), 6698–6711. https://doi.org/10.1021/acs.jpca.6b06411.
Carl, S.A.; & Crowley, J.N.(1998). Sequential two (blue) photon absorption by NO2 in the presence of H2 as a source of OH in pulsed photolysis kinetic studies: rate constants for reaction of OH with CH3NH2, (CH3)2NH, (CH3)3N, and C2H5NH2 at 295 K. J. Phys. Chem. A., 102(42), 8131–8141. https://doi.org/10.1021/jp9821937.
Atkinson, R.; Perry, R.A.; & Pitts, J.N., Jr. (1977). Rate Constants for the Reaction of the OH Radical with CH3SH and CH3NH2 over the Temperature Range 299-426oK. J. Chem. Phys. 66, 1578–1581. https://doi.org/10.1063/1.434076.
Tuazon, E.C.; Martin, P.; Aschmann, S.M.; Arey, J.; & Atkinson, R. (2011). Kinetics of the Reactions of OH Radicals with 2-Methoxy-6-(trifluoromethyl)pyridine, Diethylamine, and 1,1,3,3,3-Pentamethyldisiloxan-1-ol at 298 +/- 2 K. Intern. J. Chem. Kin., 43(11), 631–638. https://doi.org/10.1002/kin.20594.
Speak, T.H.; Medeiros, D.J.; Blitz, M.A.; & Seakins, P.W. (2021). OH Kinetics with a Range of Nitrogen-Containing Compounds: N-Methylformamide, t-Butylamine, and N-Methyl-propane Diamine. J. Phys. Chem. A., 125(48), 10439–10450. https://doi.org/10.1021/acs.jpca.1c08104.
Koch, R.; Kruger, H-U.; Elend, M.; Palm, W-U.; & Zetzsch, C. (1996). Rate constants for the gas-phase reaction of OH with amines: tert-butyl amine, 2,2,2-trifluoroethyl amine, and 1,4-diazabicyclo[2.2.2]octane. Intern. J. Chem. Kin., (2), 807–815. https://doi.org/10.1039/C4CP03801K.
Nicovich, J. M.; Mazumder, S.; Laine, P. L.; et al. (2015). An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH3NH2, (CH3)2NH, and (CH3)3N. J. Phys. Chem. Chem. Phys., (2), 911–917. https://doi.org/10.1039/C4CP03801K.
Nielsen, C.J.; Herrmann, H., Weller, Ch. (2012). Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem. Soc. Rev., 41(19), 6684–6704. https://doi.org/10.1039/c2cs35059a.
Akhmetova V.R., & Smirnov O.V. (2020). Carbon dioxide capture and storage – problems and prospects. Bashkir Chemical Journal, 27(3). 103–115. (in Russ.).
Chernova E.V., Kuznetsova L.V. (2019). Carbon dioxide and its impact on ocean ecosystems. Moscow: Moscow State University Publishing House. P. 31–32. (in Russ.).
Copyright (c) 2024 Polina S. Khomiakova, Ulyana S. Glebezdina, Danil R. Nigmatullin, Olga S. Morozova, Evgeniy S. Vasilev, and Igor I. Morozov

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.