MODELING OF INTERACTION OF GOLD AND GOLD-COPPER NANOPARTICLES WITH HYDROGEN

Keywords: nanoparticles, gold, copper, bimetals, hydrogen, adsorption, interaction, density functional theory, modeling, scanning tunneling microscopy, Auger electron spectroscopy.

Abstract

Hydrogenation of nanoparticles is known to be a key step in deactivation of hazardous chemicals, including carbon monoxide. The results of quantum-chemical modeling the process of hydrogenation of gold and bimetallic gold-copper nanoparticles are presented using an example of their interaction with atomic hydrogen under varying parameters of elemental composition of clusters and adsorption sites of hydrogen atom. The effects of the interaction of Au and Cu clusters with atomic hydrogen have been predicted and further confirmed by the results of studying the adsorption properties of the nanoparticles using scanning tunneling microscopy and Auger electron spectroscopy techniques. It has been shown that hydrogen is stably chemisorbed on nanoparticles. According to the DFT simulation analysis of hydrogen adsorption, the changes in electronic structure of the bimetallic nanosystem are found to contribute in increase of the system’s chemical activity which can be useful, for example, in nanocatalyzed reactions.

References

Tsai C.-H., Xu M., Kunal P. et al. // Catal. Today. 2018. V. 306. P. 81. DOI: https://doi.org/10.1016/j.cattod.2017.01.046.

Wang Q., Wang W., Yan B. et al. // Chem. Eng. J. 2017. V. 326. P. 182. DOI: https://doi.org/10.1016/j.cej.2017.05.110.

Gao W., Li F., Huo H. et al. // Mol. Catal. 2018. V. 448, P. 63. DOI: https://doi.org/10.1016/j.mcat.2018.01.028.

Groß A. // Top. Catal. 2006. V. 37. No. 1. P. 29. DOI: https://doi.org/10.1007/s11244-006-0005-x.

Zhao J., Jin R. // Nano Today. 2018. V. 18. P. 86. DOI: https://doi.org/10.1016/j.nantod.2017.12.009.

Nigam S., Sahoo S.K., Sarkar P. et al. // Chem. Phys. Lett. 2013. V. 584. P. 108. DOI: https://doi.org/10.1016/j.cplett.2013.08.009.

Ma L., Laasonen K., Akola J. // J. Phys. Chem. C. 2017. V. 121. Is. 20. P. 10876. DOI: https://doi.org/10.1021/acs.jpcc.6b12054.

Shi J. // Chem. Rev. 2013. V. 113. No. 3. P. 2139. DOI: https://doi.org/10.1021/cr3002752.

Dokhlikova N.V., Kolchenko N.N., Grishin M.V. et al. // Rossiiskie nanotekhnologii [Nanotechnologies in Russia]. 2016. V. 11. No. 1-2. P. 7 [in Russian].

Grishin M.V., Gatin A.K., Dokhlikova N.V. et al. // Rus. J. Phys. Chem. B. 2019. V. 13. No. 1. P. 9. DOI: 10.1134/S1990793118060167.

Rathna R., Varjani S., Nakkeeran E. // J. Environ. Manage. 2018. V. 223. P. 797. DOI: https://doi.org/10.1016/j.jenvman.2018.06.095.

Grishin M.V., Gatin A.K., Sarvadii S.Yu.,Shub B.R. // Rossiiskie nanotekhnologii [Nanotechnologies in Russia]. 2017. V. 12. No. 11-12. P. 15 [in Russian].

Giannozzi P., Baroni S., Bonini N. et al. // J. Phys.: Condens. Matter. 2009. V. 21. P. 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502.

Ozaki T., Kino H. // Phys. Rev. B. 2004. V. 69. Is. 19. P. 195113. DOI: https://doi.org/10.1103/PhysRevB.69.195113.

http://www.openmx-square.org/ (accessed 18.06.2019).

Gill P.E., Murray W., Wright M.H. Practical Optimization. Academic Press, 1981.

Hammer B. // Top. Catal. 2006. V. 37. No. 1. P 3. DOI: https://doi.org/10.1007/s11244-006-0004-y.

Hammer B., Norskov J. K. // Nature. 1995. V. 376. Is. 6537. P. 238. DOI: https://doi.org/10.1038/37623.

Kirsankin A.A., Grishin M.V., Sarvadii S.Yu. et al. // Rus. J. Phys. Chem. B. 2017. V. 11. No. 3. P. 521. DOI: https://doi: 10.1134/S1990793117030186.

Gatin A.K., Grishin M.V., Dokhlikova N.V. et al. // Rossiiskie nanotekhnologii [Nanotechnologies in Russia]. 2018. V. 13. No. 9-10. P. 3 [in Russian].

Gatin A.K., Grishin M.V., Sarvadii S.Yu. et al. // Rus. J. Phys. Chem. B. 2018. V. 12. No. 2. P. 317. DOI: https://doi: 10.1134/S1990793118020069.

Tahir D., Tougaard S. // J. Phys.: Condensed Mater. 2012. V. 24. P. 175002. DOI: https://doi:10.1088/0953-8984/24/17/175002.

Koffyberg F.P., Benko F.A. // J. Appl. Phys. 1982. V. 53. Is. 2. P. 1173. DOI: https://doi.org/10.1063/1.330567.

Published
2019-08-22
How to Cite
Dokhlikova, N. V., Gatin, A. K., Sarvadii, S. Y., Ozerin, S. A., Rudenko, E. I., Grishin, M. V., & Shub, B. R. (2019). MODELING OF INTERACTION OF GOLD AND GOLD-COPPER NANOPARTICLES WITH HYDROGEN. Chemical Safety Science, 3((6), 18 - 31. https://doi.org/10.25514/CHS.2019.Special.1
Section
Nanoscale objects and nanomaterials