The effect of exogenous glutathione on the regenerative potential of callus tissues of Taraxacum kok-saghyz L.E. Rodin
Abstract
The effect of exogenous glutathione added in various concentrations to the nutrient medium on the weight gain of callus tissues and increasing the regenerative potential of kok-sagyz plants (Taraxacum kok-saghyz L.E. Rodin) a promising domestic source of natural rubber has been studied. It is shown that there is an optimal concentration of added glutathione (1 mM), above which there is no acceleration of growth and an increase in callus mass. The addition of glutathione to the nutrient medium stimulates the formation of hydroxycinnamic acids, whereas the concentration of endogenous glutathione, even with high additives, is close to its concentration in control samples.
References
Van Beilen, J.B. & Poirier, Y (2007). Guayule and Russian Dandelion as Alternative Sources of Natural Rubber. Critical Reviews in Biotechnology. 27(4): 217–31. https://doi.org/10.1080/07388550701775927.
Amerik A.Yu., Martirosyan L.Yu., Martirosyan V.V., & Martirosyan Yu.Ts. (2022) Parthenium argentatum A. Gray, Taraxacum kok-saghyz L.E. Rodin and Scorzonera tau-saghyz Lipsch. et Bosse as alternative sources of natural rubber: Do we need them? Agricultural Biology, 57(1), 3–26. https://doi.org/10.15389/agrobiology.2022.1.3rus
Wahler, D., Gronover, C.S., Richter, C., Foucu, F.; Twyman, R.M.; Moerschbacher, B.M.; Fischer, R., Muth, J., & Prufer, D. (2009). Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species. Plant Physiology. 151(1), 334–46. https://doi.org/10.1104/pp.109.138743.
Fehér A. (2019) Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Front. Plant Sci., 26 | https://doi.org/10.3389/fpls.2019.00536.
Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., & Meyer, A.J. (2006). Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant physiology, 141(2), 446–455; https://doi.org/10.1104/pp.106.077982
Szalai G, Kellős T, Galiba G, & Kocsy G.(2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul. 28, 66–80. https://doi.org/10.1007/s00344-008-9075-2.
Zinatullina, K.M., Kasaikina, O.T., Motyakin, M.V., Ionova, I.S., Degtyarev, E.N., & Khrameeva, N.P (2020). Features of radical formation in the reactions of thiols with hydrogen peroxide. Russ. Chem. Bull. 69(10) 1865–1870. https://doi.org/10.1007/s11172-020-2971-8
Zinatullina, K.M., Khrameeva N.P., & Kasaikina O.T. (2018). Interaction of natural thiols and catecholamines with reactive oxygen species. Bulgarian Chemical Communications. 50, Special Issue C. 25–29.
Zinnatullina K.M., Kasaikina O.T., Khrameeva N.P., Turkina M.I., & Kononikhin A.S. (2021) Interaction of glutathione with resveratrol in the presence of hydrogen peroxide. Kinetic model. Kinetics and Catalysis. 62(2). 198–207; https://doi.org/10.1134/S0023158421020130.
Kasaikina O.T., Zinatullina K.M., Kancheva V.D., Slavova-Kasakova A., & Loshadkin D. (2022). Effect of Lipophilic and Hydrophilic Thiols on the Lipid Oxidation In Lipid Oxidation in Food and Biological Systems. – Springer, Cham. 185–200. https://doi.org/10.1007/978-3-030-87222-9_8
Sies H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol 11. 613–619.
Winterbourn C.C. & Hampton M.B. (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45, 549–61.
Yu C.W., Murphy T.M., & Lin C.H. (2003). Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol. 30:955–963. https://doi.org/10.1071/FP03091.
Zagorchev L, Seal C.E., Kranner I., & Odjakova M.A. (2013). Central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci. 14. 7405–7432. https://doi.org/10.3390/ijms14047405.
Rubtsova N.A., Lobanov A.V., Martirosyan L.Yu., Martirosyan Yu.Ts., & Kasaikina O.T. (2021). Dynamics of glutathione and horseradish peroxidase in the roots of Armoracia rusticana as a reaction to the illumination of the leaves with blue or red LED light during the day. Proceedings of the XXVI Annual Scientific Conference of the FITC HF RAS, section "Dynamics of chemical and biological processes" Moscow, 167–171.
Kurkin V.A. & Aznagulova A.V. (2017). Phytochemical study of the aboveground part of the medicinal dandelion. Chemistry of plant raw materials (1), 99–105. https://doi.org/10.14258/jcprm.2017011027.
Aznagulova A.V. (2016). Pharmacognostic study of medicinal dandelion (Taraxacum officinale wigg.) (PhD dissertation). Samara.
Nomura K., Matsumoto S., Masuda K., & Inoue M. (1998). Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M26. Plant Cell Rep. 17(8): 597–600. https://doi.org/10.1007/s002990050449.
Al-Mayahi. A.M.W., Jafar O.N., & Mohsen K.А. (2020) Effect of glutathione (GSH) on Date palm (Phoenix dactylifera L.) micropropagation. FOLIA ECOLOGICA 47(1), https://doi.org/10.2478/foecol-2020-0008.
Copyright (c) 2022 Levon Yu. Martirosyan, Natalia A. Rubtsova, Lidiya A. Smurova, Yurii Ts. Martirosyan, Karina M. Zinatullina, Anton V. Lobanov, and Olga T. Kasaikina

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.