Tetraphenylporphyrine based nanosized film elements for detection of Eu(III) cations in water by fluorescent method
Abstract
Monomolecular layer of tetraphenylporphyrin mixed with stearic acid transferred onto modified quartz plates is shown to exhibit fluorescent properties sensitive to the presence of europium(III) cations in aqueous media. A principal possibility of producing a sensor element for quantitative determination of europium in water is proposed, and its performance parameters are determined.
References
Bannikova, D.A., Kononenko, A.B., & Lobanov, A.V. (2017). Influence of metallic and metall complex nanoparticles on bacterial populations. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 1(2), 88 - 96 (in Russ.). https://doi.org/10.25514/CHS.2017.2.10983
Lobanov, A.V., Olkhov, A.A., & Popov, A.A. (2018). Bactericidal properties of fibrous material based on polyhydroxybutyrate and metal porphyrin complexes. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 2(2), 88 - 96 (in Russ.). https://doi.org/10.25514/CHS.2018.2.14104
Fomichev, V.A., & Lobanov, A.V. (2019). Hydroxyapatite as a mineral matrix for antibacterial substances. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 3(2), 37 - 44 (in Russ.). https://doi.org/10.25514/CHS.2019.2.16002
Lobanov, A.V., & Melnikov, M.Ya. (2019). Photocatalytic activity of immobilized metallo-tetrapyrrole complexes in hydrogen peroxide media. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 3(1), 28 - 34. https://doi.org/10.25514/CHS.2019.1.15001
Lobanov, A.V., Gromova, G.A., Gorbunova, Yu.G., &Tsivadze, A.Yu. (2017). Lanthanide complexes of phthalocyanines for identification of nanosized silica in water. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 1(1), 54 - 61 (in Russ.). https://doi.org/10.25514/CHS.2017.1.11431
Shchelkunova, A.E., Boltukhina, E.V., Rumyantseva, V.D., Shilov, I.P., & Karakotova, S.D. (2019). Development of the synthesis of 2,4-di(α-methoxyethyl)-deuteroporphyrin IX ytterbium complex dipotassium salt. Macroheterocycles, 12(4), 382 - 388. DOI: 10.6060/mhc190658s
Ivanovskaya, N.P., Shilov, I.P., Shchamkhalov, K.S., Markushev, V.M., Ivanov, A.V., Rumyantseva, V.D., & Mironov, A.F. (2015). Nanoparticles based on lexan polymer matrix and the ytterbium complex of porphyrin: synthesis, spectral-luminescence properties and prospects of using for neoplasm diagnostics. Macroheterocycles, 8(1), 50 - 55. DOI: 10.6060/mhc140715r
Ermolaev, V.L., Sveshnikova, E.V., & Shakhverdov, T.A. (1976). Investigation of the formation of complexes of organic molecules and lanthanide ions in solutions by the electronic energy transfer method. Uspekhi khimii = Russ. Chem. Rev., 45(10), 896 - 912. https://doi.org/10.1070/RC1976v045n10ABEH002732
Goecke, F., Jerez, C.G., Zachleder, V., Figueroa, F.L., Bisova, K., Rezanka, T., & Vitova, M. (2015). Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00002
Palasz, A., & Czekaj, P. (2000). Toxicological and cytophysiological aspects of lanthanides action. Acta Biochimica Polonica, 47(4), 1107 - 1114. https://doi.org/10.18388/abp.2000_3963
Cotruvo, J.A. (2019). The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications. ACS Central Science, 5(9), 1496 -1 506. https://doi.org/10.1021/acscentsci.9b00642
Teo, R.D., Termini, J., & Gray, H.B. (2016). Lanthanides: applications in cancer diagnosis and therapy. Journal of Medicinal Chemistry, 59(13), 6012 - 6024. https://doi.org/10.1021/acs.jmedchem.5b01975
Zheng, Q., Dai, H., Merritt, M.E., Malloy, C., Pan, C.Y., & Li, W.-H. (2005). A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. Journal of the American Chemical Society, 127(46), 16178 - 16188. https://doi.org/10.1021/ja054593v
Eliseeva, S.V., & Bünzli, J.-C.G. (2011). Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 35(6), 1165 - 1176. https://doi.org/10.1039/C0NJ00969E
Morin, M., Bador, R., & Dechaud, H. (1989). Detection of europium(III) and samarium(III) by chelation and laser-excited time-resolved fluorimetry. Analytica Chimica Acta, 219, 67 - 77. https://doi.org/10.1016/S0003-2670(00)80334-7
Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-based metal organic frameworks: synthetic strategies and catalytic applications. ACS Catalysis, 6(9), 6063 -6072. https://doi.org/10.1021/acscatal.6b01935
Zhu, Q., Zhang, L., Van Vliet, K., Miserez, A., & Holten-Andersen, N. (2018). White light-emitting multistimuli-responsive hydrogels with lanthanides and carbon dots. ACS Applied Materials & Interfaces, 10(12), 10409 - 10418. https://doi.org/10.1021/acsami.7b17016
Lobanov, A.V., Nagovitsyn, I.A., & Chudinova, G.K. (2018). Determination of albumin by immunosensor technique with fluorescent type of detection. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 2(2), 119 - 130 (in Russ.). https://doi.org/10.25514/CHS.2018.2.14109
Shakhverdov, Т.А. (1970). Photon transfer of an electron from molecules of organic compounds to Eu3+ in liquid solutions. Optika i spektroskopiya = Optics and spectroscopy, 29(2), 315 - 321 (in Russ.).
Greinacher, E. (1981). History of rare earth applications, rare earth market today. Industrial Applications of Rare Earth Elements. ACS Symposium Series, 164. Chapter 1, 3 - 17. DOI: 10.1021/bk-1981-0164.ch001
Copyright (c) 2020 А. В. Лобанов , О. А. Грузнова, Н. А. Рубцова

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.