Investigation of aromatic compounds sorption from aqueous solutions by thermally expanded graphite
Abstract
The results of investigation of the possibility of thermally expanded graphite based on graphite nitrate, cointercalated with ethyl formate and acetic acid, using for water purification from aromatic compounds are presented. The possibility of carbon sorbents using, in particular thermally expanded graphite, for water purification from aromatic compounds is directly related to the study of their sorption capacity. Thermally expanded graphite (TEG), synthesized and studied by us earlier, was used as a sorption material in this work. It is a highly porous material with high ability to regenerate, low consumption and relatively low cost. TEG is chemically inert, heat-resistant, has a high specific surface area, and also shows good sorption capacity relative to various toxicants., Monoaromatic hydrocarbons: benzene and phenol were used as adsorbates for the experiments. The static sorption capacity investigations were carried out by UV spectroscopy method at 20 ºС. Adsorption isotherms were obtained based on the experimental values of sorption capacity. Obtained isotherms can be related to S class according to C.H. Giles classification. The values of the maximum sorption capacity of TEG relative to benzene and phenol were determined in the studied concentration range of toxicants – 0.25 and 6.95 g/g of sorbent, respectively.
References
Savin, A.V. (2014). Organically modified sorbents for removal of light petroleum hydrocarbons from water and air (Doctoral dissertation). Kazan: Kazan University (in Russ.).
Hameed, B.H., & Rahman, A.A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater., 160(2-3), 576 - 581. https://doi.org/10.1016/j.jhazmat.2008.03.028
Kotel, L.Yu., Brichka, A.V., Chernyavskaya, T.V., Terets, M.I., & Brichka, S.Y. (2011). Phenol adsorption by modified multi-walled carbon nanotubes. Vіsnik Harkіvs'kogo nacіonal'nogo unіversitetu = Kharkov University Bulletin, 20(43), 192 - 199 (in Russ).
Bets, S.A., Somin, V.A., & Komarova, L.F. (2014). Water purification from phenol and its derivatives on materials from plant raw. Polzunovskij vestnik = Polzunov Bulletin, 3, 243- 245 (in Russ).
Polat, H., Molva, M., & Polat, M. (2006). Capacity and mechanism of phenol adsorption on lignite. Inter. J. Miner. Proc., 79(4), 264 - 273. https://doi.org/10.1016/j.minpro.2006.03.003
Kumar, A., Kumar, Sh., Kumar, S., & Gupta, Dh.V. (2007). Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: Equilibrium and kinetics. J. Hazard. Mater., 147(1-2), 155 - 166. https://doi.org/10.1016/j.jhazmat.2006.12.062
Cañizares, P., Carmona, M., Baraza, O., Delgado, A., & Rodrigo, M.A. (2006). Adsorption equilibrium of phenol onto chemically modified activated carbon F400. Ibid, 131(1-3). 243 - 248. https://doi.org/10.1016/j.jhazmat.2005.09.037
Maistrenko, V.N., & Klyuev, N.A. (2011). Ecological and analytical monitoring of persistent organic pollutants. M.: Binom (in Russ).
Fatikhova, N.I., Yagafarova, G.G., Korzhova, L.F., Leontiev, S.V., & Yagafarova D.I. (2016). Wastewater treatment of phenolic compounds using algae Saladophora aegagropila. Vestnik tekhnologicheskogo universiteta = Bulletin of the Technological University, 19(10), 152 - 153 (in Russ.).
Pang, X.Y., & Lin, R.N. (2010). Adsorption Mechanism of Expanded Graphite for Oil and Phenyl Organic Molecules. Asian Journal of Chemistry, 22(6), 4469 - 4476.
Savin, A.V., Denisova, A.P., Khuziahmetov, R.Kh., Neklyudov, S.A., & Breus, V.A. (2012). Sorption binding of hydrocarbons and conditionally pathogenic microorganisms with inorganic sorbents (on the example of benzene and e. coli). Vestnik Kazanskogo tekhnologicheskogo universiteta = Kazan Technological University Bulletin, 15(19), 123 - 126 (in Russ.).
László, K., Tombácz, E., & Novák, Cs. (2007). pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Coll. and Surf. A: Phys. Chem. Eng. Asp., 306(1-3). 95 - 101. https://doi.org/10.1016/j.colsurfa.2007.03.057
Voitash, A.A., Vishnevsky, V.Yu., Berestneva, Yu.V. Raksha, E.V., Muratov, A.V., Eresko, A.B. Glazunova, V.A., Burhovetskiy, V.V., Volkova, G.K., & Savoskin, M.V. (2019). Exfoliated graphite from graphite nitrate cointercalation compounds: production and some applications. In: Applied Aspects of Nano-Physics and Nano-Engineering. New York: Nova Science Publishers Inc. Vol. 1. (pp. 25 - 28).
Davydova, А.А., Berestneva, Yu.V., Raksha, E.V., Glazunova, V.A., Burhovetskiy, V.V., Vdovichenko, A.N., & Savoskin, M.V. (2019). Production of the few-layer graphene particles from thermally expanded graphite in tert-butanol. Vestnik Luganskogo nacional'nogo universiteta imeni Vladimira Dalya = Vestnik Lugansk Vladimir Dahl National University, 25(7), 169 - 174 (in Russ.).
Handorin, G.P., Dubov, G.I., Mazin, V.I., & Makotchenko, V.G. (2010). Synthesis and application of nanostructured graphite. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = News of Tomsk Polytechnic University. Geo-Resource Engineering, 316(3), 5 - 11 (in Russ.).
Chesnokov, N.V., Kuznetsov, B.N., Mikova, N.M., & Drozdov, V.A. (2006). Sorption properties of composites based on thermally expanded graphites. Russian Journal of General Chemistry, L(1), 75 - 78 (in Russ.).
Sorokina, N.E. Mudretsova, S.N., & Mayorova, A.F., Avdeev, V.V., & Maksimova, N.V. (2001). Thermal properties of graphite intercalation compounds with HNO3. Inorganic Materials, 37(2), 153 - 156. https://doi.org/10.1023/A:1004109711069
Finaenov, A.I., Kolchenko, A.S., Yakovlev, A.V., Finaenova, E.V., & Kolesnikova, M.A. (2011). Adsorbents based on thermally expanded graphite. Vestnik SGTU = Bulletin of SSTU, 2(1), 45 - 52 (in Russ.).
Soldatov, V.S., & Korshunova T.A. (2012). Physicochemical and sorption properties of thermally expanded graphite. Vescі Nacyyanal'naj akademіі navuk Belarusі. Seryya hіmіchnyh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 3, 82 - 86 (in Russ.).
Temirkhanov, B.A., Sultygova, Z.H., Salamov, A.Kh., & Nalgieva, A.M. (2012). New carbon materials for liquidation of overflows of oil. Fundamental'nye issledovaniya = Fundamental research, 6(2), 471 - 475 (in Russ.).
Yakovlev, A.V., Finaenov, A.I., Yakovleva, E.V., & Finaenova, E.V. (2004). Use of thermally expanded graphite in water-purification and water-treatment systems. Russian Journal of Applied Chemistry, 77, 1815 – 1817. https://doi.org/10.1007/s11167-005-0166-6
Vlasenko, E.V., Godunov, I.A., Lanin, S.N., Nikitin, Yu.S., Khokhlova, T.D., & Shonia, N.K. (2005). Comparative analysis of structural and sorption characteristics of thermally expanded graphites and activated carbons in water purification from organic substances. Vestnik Moskovskogo Universiteta. Khimiya = Moscow University Chemistry Bulletin, 46(4), 231 - 235 (in Russ.).
Nikitina, T.V. (2011). Water purification from oil products and heavy metal ions by sorbents based on fibrous materials waste and graphite (Doctoral dissertation abstract). Ivanovo: Engels Institute of Technology (in Russ.).
Yakovlev, A.V. (2005). The use of thermally expanded graphite for water purification from Cr (VI), Ni (II), Fe (II) ions. Vestnik SGTU = Bulletin of SSTU, 4(9). 85 - 89 (in Russ.).
Kuznetsov, B.N., Chesnokov, N.V., Mikova, N.M., & Zaikovskii, V.I. (2003). Texture and catalytic properties of palladium supported on thermally expanded natural graphite. React. Kinet. Catal. Lett, 80, 345 - 350. https://doi.org/10.1023/B:REAC.0000006144.22936.ac
Raksha, E.V., Berestneva, Yu.V., Vishnevskij, V.Yu., Volkova, G.K., Vdovichenko, A.N., & Savoskin, M.V. (2018). New triple graphite cointercalation compounds. Vestnik Luganskogo nacional'nogo universiteta imeni Vladimira Dalya = Vestnik Lugansk Vladimir Dahl National University, 25(7), 169 - 174 (in Russ.).
Davydova, А.А., Voitash, A.A., Berestneva, Yu.V., Raksha, E.V., Muratov, A.V., Eresko, A.B. Burhovetskiy, V.V., Volkova, G.K., Savoskin, M.V. (2019). Sorption properties of thermally expanded graphite nitrate cointercalated with ethyl formate and acetic acid. Khimicheskaya Bezopasnost' = Chemical Safety Science, 3(5), 39 - 48 (in Russ.). https://doi.org/10.25514//CHS.2019.Special.2
Raksha, E.V., Berestneva, Yu.V., Vishnevsky, V.Yu., Maydanik, А.А., Glazunova, V.A., Burhovetskiy, V.V., Vdovichenko, A.N., & Savoskin, M.V. (2017). Carbon nanoparticles based on new triple graphite cointercalation compounds. Khimicheskaya fizika i mezoskopiya = Chemical Physics and Mesoscopics, 19(3), 448 - 453 (in Russ.).
Berestneva, Yu.V., Voitash, A.A., Raksha, E.V., & Savoskin, M.V. (2019). Water purification for irrigation of agricultural objects from oil products with a sorbent based on thermally expanded graphite. Proceedings of International conference «Results and prospects for development of agriculture». s. Solenoye Zaimishche: FGBNU «PAFNC RAN». P. 413 - 415 (in Russ.).
Netskina, O.V. (2015). Adsorption from solutions on a solid surface: a training manual. Novosibirsk: RIC NSU (in Russ.).
Negrea, P., Sidea, F., Negrea, A., Lupa, L., Ciopec, M., & Muntean, C. (2008). Studies regarding the benzene, toluene and o-xylene removal from waste water. Chem. Bull. «POLITEHNICA», 53(67), 144 - 146.
Anisimova, N.A. (2009). Identification of Organic Compounds: a training manual. GornoAltaysk: RIO GAGU (in Russ.).
Vyazmin, S.Yu., Ryabukhin, D.S., & Vasiliev, A.V. (2011). Electronic spectroscopy of organic compounds: a training manual. SPb .: SPbGLTA (in Russ.).
Srihari, V., & Das, Ash. (2008). Comparative studies on adsorptive removal of phenol by three agro-based carbons: Equilibrium and isotherm studies. Ecotoxicol. Environ. Saf., 71(1), 274 - 283. https://doi.org/10.1016/j.ecoenv.2007.08.008
Copyright (c) 2020 Anna. A. Voitash, Yulia V. Berestneva, Elena V. Raksha, Alina A. Davydova, and Mikhail V. Savoskin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.