Анализ побочных продуктов гамма-радиолиза 1,2,4-трихлорбензола в бензоле
Аннотация
В этой работе исследовалась деградация трихлорбензола (ТХБ) как модельного соединения для гексахлорбензола (ГХБ), с использованием бензола в качестве растворителя, с целью понимания эффективности гамма-радиолиза при очистке от стойких органических загрязнителей (СОЗ). Использовалось гамма-излучение от источника 60Co. Качественные изменения в растворах образцов анализировались с помощью газовой хроматографии-масс-спектрометрии (ГХ-МС). Наши результаты демонстрируют 99,1%-ную конверсию ТХБ, что приводит к образованию различных менее хлорированных бензолов (ХБ) и других хлорированных и нехлорированных органических соединений. В частности, в системе ТХБ + бензол на основе их масс-спектров было идентифицировано 39 различных соединений. Побочные продукты, такие как 3,5-дихлорбифенил, 4,4'-дихлор-1,1'-бифенил и 3,4-дихлор-1,1'-бифенил (ПХБ), проявляют значительную канцерогенную опасность. Эти результаты подчеркивают потенциальные риски для здоровья, связанные с процессом радиолитической деградации СОЗ в бензоле. Значение G для деградации ТХБ в бензоле показывает 5,47 молекул/100 эВ при поглощенной дозе 3,0 кГр. Однако значение G впоследствии снижается до 0,19 молекул/100 эВ при более высоких дозах, тенденция, которая отражает не только насыщение емкости реагирующих веществ, но и уменьшение концентрации ТХБ, что ограничивает дальнейшую деградацию, несмотря на возросшее воздействие радиации.
Литература
Olutona, G. O., Olatunji, S. O., & Obisanya, J. F. (2016). Downstream assessment of chlorinated organic compounds in the bed-sediment of Aiba Stream, Iwo, South-Western, Nigeria. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-1664-0.
Wang, Z., Adu-Kumi, S., Diamond, M. L., Guardans, R., Harner, T., Harte, A., Kajiwara, N., Klánová, J., Liu, J., Moreira, E. G., Muir, D. C. G., Suzuki, N., Pinas, V., Seppälä, T., Weber, R., & Yuan, B. (2022). Enhancing scientific support for the Stockholm Convention’s implementation: An analysis of policy needs for scientific evidence. Environmental Science & Technology, 56(5), 2936–2949. https://doi.org/10.1021/acs.est.1c06120.
Reed, L., Buchner, V., & Tchounwou, P. B. (2007). Environmental Toxicology and Health Effects Associated with Hexachlorobenzene Exposure. Reviews on Environmental Health, 22(3). https://doi.org/10.1515/reveh.2007.22.3.213.
Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.962619.
Li, C., Yang, L., Liu, X., Yang, Y., Qin, L., Li, D., & Liu, G. (2021). Bridging the Energy Benefit and POPs Emission Risk from Waste Incineration. ˜the Innovation, 2(1), 100075. https://doi.org/10.1016/j.xinn.2020.100075.
Malik, B., Pirzadah, T. B., & Hakeem, K. R. (2022). Phytoremediation of persistent organic pollutants (POPs). In Elsevier eBooks (pp. 415–436). https://doi.org/10.1016/b978-0-323-89874-4.00010-8.
Hussain, M., Mahtab, M. S., & Farooqi, I. H. (2020). The applications of ozone-based advanced oxidation processes for wastewater treatment: A review. Advances in Environmental Research, 9(3), 191–214. https://doi.org/10.12989/aer.2020.9.3.191.
Takagi, K. (2020). Study on the biodegradation of persistent organic pollutants (POPs). Nippon Nōyaku Gakkaishi, 45(2), 119–123. https://doi.org/10.1584/jpestics.j19-06.
Zhu, K., Zhu, H., Feng, S., Fu, J., Guo, D., Sun, Q., Huang, L., & Hao, X. (2019). Electrochemical degradation of chemical wastewater by anodic oxidation process. IOP Conference Series. Earth and Environmental Science, 371(3), 032018. https://doi.org/10.1088/1755-1315/371/3/032018.
Ansari, A., & Nematollahi, D. (2020). Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism. Applied Catalysis. B, Environmental, 261, 118226. https://doi.org/10.1016/j.apcatb.2019.118226.
Almirall, X. O., Yagüe, N. S., Gonzalez-Olmos, R., & Díaz-Ferrero, J. (2022). Photochemical degradation of persistent organic pollutants (PCDD/FS, PCBS, PBDES, DDTS and HCB) in hexane and fish oil. Chemosphere, 301, 134587. https://doi.org/10.1016/j.chemosphere.2022.134587.
Nguyen, V., Smith, S. M., Wantala, K., & Kajitvichyanukul, P. (2020). Photocatalytic remediation of persistent organic pollutants (POPs): A review. Arabian Journal of Chemistry, 13(11), 8309–8337. https://doi.org/10.1016/j.arabjc.2020.04.028.
Yang, R., Wang, Z., Guo, J., Qi, J., Liu, S., Zhu, H., Li, B., & Liu, Z. (2024). Catalytic degradation of antibiotic sludge to produce formic acid by acidified red mud. Environmental Research, 245, 117970. https://doi.org/10.1016/j.envres.2023.117970.
Tait, P. W., Brew, J., Che, A., Costanzo, A., Danyluk, A., Davis, M., Khalaf, A., McMahon, K., Watson, A., Rowcliff, K., & Bowles, D. (2020). The health impacts of waste incineration: a systematic review. Australian and New Zealand Journal of Public Health, 44(1), 40–48. https://doi.org/10.1111/1753-6405.12939.
M, D., A, S., N, S., & A, J. (2002). Biotechnology and bioremediation: successes and limitations. Applied Microbiology and Biotechnology, 59(2–3), 143–152. https://doi.org/10.1007/s00253-002-1024-6.
Mukherjee, A., Debnath, B., & Ghosh, S. K. (2016). A Review on Technologies of Removal of Dioxins and Furans from Incinerator Flue Gas. Procedia Environmental Sciences, 35, 528–540. https://doi.org/10.1016/j.proenv.2016.07.037
Paz-Alberto, A. M., & Sigua, G. C. (2013). Phytoremediation: a green technology to remove environmental pollutants. American Journal of Climate Change, 02(01), 71–86. https://doi.org/10.4236/ajcc.2013.21008.
Morrison, C. M., Hogard, S., Pearce, R., Mohan, A., Pisarenko, A. N., Dickenson, E. R. V., Von Gunten, U., & Wert, E. C. (2023). Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. Environmental Science & Technology, 57(47), 18393–18409. https://doi.org/10.1021/acs.est.3c00538.
Gaur, N., Narasimhulu, K., & Y, P. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. https://doi.org/10.1016/j.jclepro.2018.07.076.
Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2023). A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Applied Catalysis. B, Environmental, 328, 122430. https://doi.org/10.1016/j.apcatb.2023.122430.
Al-Nuaim, M. A., Alwasiti, A. A., & Shnain, Z. Y. (2022). The photocatalytic process in the treatment of polluted water. Chemical Papers/Chemické Zvesti, 77(2), 677–701. https://doi.org/10.1007/s11696-022-02468-7.
Gaur, N., Dutta, D., Singh, A., Dubey, R., & Kamboj, D. V. (2022). Recent advances in the elimination of persistent organic pollutants by photocatalysis. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.872514.
Karimov, S., Abdullayev, E., Gurbanov, M., Gasimzada, L., & Feyziyeva, S. (2024b). Gamma Irradiation-Induced Degradation of hexachlorobenzene in methanol: Kinetics, mechanism and Dehalogenation Pathway. Radiation Physics and Chemistry, 112288. https://doi.org/10.1016/j.radphyschem.2024.112288.
Jiménez-Becerril, J., Moreno-López, A., & Jiménez-Reyes, M. (2016). Radiocatalytic degradation of dissolved organic compounds in wastewater. Nukleonika, 61(4), 473–476. https://doi.org/10.1515/nuka-2016-0077.
Hina, H., Nafees, M., & Ahmad, T. (2021). Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon, 7(2), e05972. https://doi.org/10.1016/j.heliyon.2021.e05972.
Karimov, S., Abdullayev, E., Millet, M., & Gurbanov, M. (2024). Radiolytic degradation of 1,2,4-trichlorobenzene (TCB) in some organic solvents by gamma rays: The kinetic properties of complete dechlorination of TCB and its pathway. Heliyon, 10(10), e31547. https://doi.org/10.1016/j.heliyon.2024.e31547.
Laverne, J., & Araos. (1999). Radical production in the radiolysis of liquid benzene. Radiation Physics and Chemistry, 55(5–6), 525–528. https://doi.org/10.1016/s0969-806x(99)00239-x.
Laverne, J. A., & Araos, M. S. (2002). Heavy ion radiolysis of liquid benzene. The Journal of Physical Chemistry. A, 106(46), 11408–11413. https://doi.org/10.1021/jp021401z.
Taghipour, F., & Evans, G. J. (1997). Radiolytic dechlorination of chlorinated organics. Radiation Physics and Chemistry, 49(2), 257–264. https://doi.org/10.1016/s0969-806x(96)00065-5.
Alkhuraiji, T. S., Boukari, S. O., & Alfadhl, F. S. (2017). Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: Effects of reagent. Journal of Hazardous Materials, 328, 29–36. https://doi.org/10.1016/j.jhazmat.2017.01.004.
International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. (2012). Vol. 100 F. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012. (accessed 01.11.2024).
Islam, R., Kumar, S., Karmoker, J., Kamruzzaman, M., Rahman, M. A., Biswas, N., Tran, T. K. A., & Rahman, M. M. (2018). Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives. Environmental Technology & Innovation, 12, 115–131. https://doi.org/10.1016/j.eti.2018.08.002.
Safety Data Sheet of 3-Methylcyclohexanol. (n.d.). https://www.chemicalbook.com/msds/3-methylcyclohexanol.pdf. (accessed 01.11.2024).
Safety Data Sheet of Cyclohexanol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC147680025&countryCode=US&language=en. (accessed 02.11.2024).
Safety Data Sheet of Methylcyclohexane. (n.d.). https://www.carlroth.com/medias/SDB-9913-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMjYyNjl8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNTcvaDNmLzg5NjQ5ODM3ODM0NTQucGRmfGVhZmJlZjIxNWUxZjU5ZmQ0MjJkNjRkMzI2MzM5MjkzOTg0NTNhM2Y4. (accessed 02.11.2024).
Safety Data Sheet of Ethylcyclopentane. (n.d.). https://www.chemicalbook.com/msds/ethylcyclopentane.pdf. (accessed 02.11.2024).
Safety Data Sheet of Cyclohexanone. (n.d.). https://www.fishersci.com/msdsproxy%3FproductName%3DC5504%26productDescription%3DCYCLOHEXANONE%2BPURIFIED%2B4L%26catNo%3DC550-4%26vendorId%3DVN00033897%26storeId%3D10652. (accessed 04.11.2024).
Safety Data sheet of 2-Chlorophenol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC180991000&countryCode=US&language=en. (accessed 02.11.2024).
Safety data sheet of 2,5-Dichlorophenol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC113580500&countryCode=US&language=en. (accessed 02.11.2024).
Safety Data Sheet of Phenol. (n.d.). https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-p/S25463.pdf. (accessed 04.11.2024).
Safety Data Sheet of Benzaldehyde. (n.d.). https://www.carlroth.com/medias/SDB-NE01-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTU1MTl8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oODQvaGYzLzg5NzQzOTY2ODYzNjYucGRmfDQ2M2Y0MzhiNGVlOThiOWUxNmEyMDZhNDM5NjM2NjgwYzQ2YTJhNTRlYWU3ZmJmNGYzYzAwNzYwMjg4NzhkYmU. (accessed 02.11.2024).
Safety Data Sheet of Toluene. (n.d.). https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-t/S25611.pdf. (accessed 01.11.2024).
Safety Data Sheet of 1,2-Dichlorobenzene. (n.d.). https://www.fishersci.com/msdsproxy%3FproductName%3DO22311%26productDescription%3DO-DICHLOROBENZENE%2BCERT%2B1L%26catNo%3DO2231-1%26vendorId%3DVN00033897%26storeId%3D10652. (accessed 02.11.2024).
Safety Data Sheet of 1,3-Dichlorobenzene. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC151180050&productDescription=1%2C3-DICHLOROBENZENE+98%25+5ML&vendorId=VN00032119&countryCode=US&language=en. (accessed 02.11.2024).
Safety Data Sheet of 1,4-Dichlorobenzene. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC113190010&productDescription=1%2C4-ICHLOROBENZENE%2C+97%25+1KG&vendorId=VN00032119&countryCode=US&language=en. (accessed 04.11.2024).
Safety Data Sheet of Chlorobenzene. (n.d.). https://www.carlroth.com/medias/SDB-KK01-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyODgxODV8YXBwbGljYXRpb24vcGRmfGg1My9oNmYvOTE0OTAxMzI5NTEzNC9TREJfS0swMV9HQl9FTi5wZGZ8MmE3Njc5NTQ3MzIwZTZkNTBhMTU4OTNlNjBiNmZiOGQ0YTU1OTEyMzY4M2JjMmJjM2I1YzViYjUyNTU2ZGUxMQ. (accessed 02.11.2024).
Safety Data Sheet of 1,2,4-Triphenylbenzene. (n.d.). https://www.chemicalbook.com/msds/1-2-4-triphenylbenzene.pdf. (accessed 02.11.2024).
Safety Data Sheet of Triphenylene. (n.d.). https://www.chemicalbook.com/msds/triphenylene.htm. (accessed 05.11.2024).
Safety Data Sheet of 1,1’-Biphenyl. (n.d.). https://www.carlroth.com/medias/SDB-3216-AU-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTkwMTV8YXBwbGljYXRpb24vcGRmfGFHSmxMMmd6T1M4NU1UUTBNRFk0T0RZMk1EYzRMMU5FUWw4ek1qRTJYMEZWWDBWT0xuQmtaZ3w3N2Y3NDE1OWEzMTJjYTBmMzcwNWQyNzI1OWJlZDBhZTYyMmZkYTBiN2M1NzM5MDNkM2UzMjdmZmU5ZmUyYzkz. (accessed 02.11.2024).
Safety Data Sheet of 1,3-Dimethylcyclopentane. (n.d.). https://www.chemicalbook.com/msds/1-3-dimethylcyclopentane.htm. (accessed 02.11.2024).
Safety Data Sheet of n-Heptane. (n.d.). https://www.carlroth.com/medias/SDB-7566-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyOTEzMDN8YXBwbGljYXRpb24vcGRmfGgxMy9oZDYvOTE0NzQyMzAzMTMyNi9TREJfNzU2Nl9HQl9FTi5wZGZ8ZDcxZjY1MGFhNGY4OWQwNzAzNjhiZmRmMDAxNTE1MmFjOWZjZDUzZjk4YTdhMmU4NjY3ODVmMDM3NmJkMTA5Mg. (accessed 02.11.2024).
Safety Data Sheet of Hexan-2-one. (n.d.). https://www.chemos.de/import/data/msds/GB_en/591-78-6-A0225886-GB-en.pdf. (accessed 02.11.2024).
Safety Data Sheet of Hexan-3-one. (n.d.). https://bg.cpachem.com/msds?num=SB44754&dnl=sd_-_3-Hexanone_CAS_589-38-8_%28SB44754%29_%28EU%29.pdf. (accessed 02.11.2024).
Safety Data Sheet of Hexan-2-ol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AC156290100&productDescription=2-HEXANOL%2C+99%25+10GR&vendorId=VN00032119&countryCode=US&language=en. (accessed 02.11.2024).
Safety Data Sheet of Hexan-3-ol. (n.d.). https://www.fishersci.com/store/msds?partNumber=AAA1967209&productDescription=1-HEXEN-3-OL+98%25+10G&vendorId=VN00024248&countryCode=US&language=en. (accessed 02.11.2024).
Safety Data Sheet of 2,4-Dimethyl-3-hexanol. (n.d.). https://www.chemicalbook.com/msds/3-4-dimethyl-3-hexanol.htm. (accessed 04.11.2024).
Agilent. (2019, March 25). Safety Data Sheet Acc. to OSHA HCS. https://www.agilent.com/cs/library/msds/RTP-002_NAEnglish.pdf. (accessed 02.11.2024).
Chem Service inc. (2019, May 22). SAFETY DATA SHEET of 3,5-Dichlorobiphenyl. http://cdn.chemservice.com/product/msdsnew/External/English/BZ-14%20English%20SDS%20US.pdf. (accessed 04.11.2024).
Stockholm Convention. (n.d.). Stockholm Convention, protecting human health and the environment from persistent organic pollutants. https://www.pops.int/Implementation/IndustrialPOPs/PCB/Overview/tabid/273/Default.aspx. (accessed 04.11.2024).
Copyright (c) 2024 Самир Каримов, Эльшад Абдуллаев, Муслим Гурбанов

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.