Перспективы применения микроволнового излучения для пиролиза различных видов пластиковых отходов

  • Н.Ю. Ковалева Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наукН, Москва, Россия https://orcid.org/0000-0002-2664-9815
Ключевые слова: пиролиз, микроволновое излучение, механизм, эффективность, параметры процесса, катализаторы, отходы, пластики, биомасса, продукты пиролиза

Аннотация

Применение микроволнового излучения для пиролиза является одной из наиболее перспективных технологий переработки пластиковых отходов и биомассы в ценные органические продукты. В обзоре подробно освещается микроволновый пиролиз как альтернатива традиционному пиролизу из-за его преимущества в обеспечении быстрого и эффективного нагрева. В статье рассматриваются ключевые параметры, влияющие на выход и состав продуктов пиролиза: различные типы пластика и поглотителя, температура, мощность микроволн, время пребывания и катализаторы. Приводятся примеры оценки энергетического баланса и технико-экономического анализа процесса микроволнового пиролиза. Обсуждаются основные проблемы и ограничения этого процесса. Проанализированы возможности использования микроволнового пиролиза в промышленных масштабах.

Литература

Leadbeater N. E., Torenius H. M., Tye H. (2003). Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitriles from aryl halides. Tetrahedron, 59(13), 2253‒2258. https://doi.org/10.1016/S0040-4020(03)00214-X.

Padwa A., Flic A. C. (2013) Advances in Heterocyclic Chemistry. 110, 1‒41. https://doi.org/10.1016/B978-0-12-408100-0.00001-X.

Das, A., & Banik, B. K. (2021). Microwave-assisted enzymatic. Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends, Elsevier. 245‒281. https://doi.org/10.1016/B978-0-12-822895-1.00009-6.

Kobayashi S. (2012) Polymer Science: A Comprehensive Reference. 4.15 - Polymerization of Oxazolines. Elsevier. 4, 397‒426. https://doi.org/10.1016/B978-0-444-53349-4.00110-2.

Bogdal D. (2012). Polymer Science: A Comprehensive Reference. 4.39 - Microwave-Assisted Polymerization. Elsevier. 4, 981–1027. https://doi.org/10.1016/B978-0-444-53349-4.00121-7.

Zagatto, E. A., Oliveira, C. C., Townshend, A., & Worsfold, P. (2012). Flow analysis with spectrophotometric and luminometric detection. Elsevier. (2012). https://doi.org/10.1016/B978-0-12-385924-2.00008-2.

Zaritovskii A. N., Kotenko E. N., Grishchuk S. V., Glazunova V. A., Volkova G. K. (2024). Studying catalytic synthesis of carbon nanostructures during microwave-assisted pyrolysis of cellulose. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, (16). 864‒872.

Sutradhar P., Debnath N., Saha M. Microwave-assisted rapid synthesis of alumina nanoparticles using tea, coffee and triphala extracts // Advances in Manufacturing. 2013. V. 1, N4. Pp. 357–361.

Bhuvanasree, S. R., Harini, D., Rajaram, A., & Rajaram, R. (2013). Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 190-196.

Bilecka, I., & Niederberger, M. (2010). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358–1374.

Liu, Y., Lu, Y., Liu, S., & Yin, Y. (1999). The effects of microwaves on the catalyst preparation and the oxidation of o-xylene over a V2O5/SiO2 system. Catalysis today, 51(1), 147-151. https://doi.org/10.1016/S0920-5861(99)00017-6.

Zhang, P., Wang, Q., Fang, Y., Chen, W., Kirchon, A. A., Baci, M., ... & Zhou, H. C. (2019). Metal-organic frameworks for capture and degradation of organic pollutants. In Metal-Organic Frameworks (MOFs) for Environmental Applications (pp. 203–229). Elsevier. https://doi.org/10.1016/B978-0-12-814633-0.00009-0.

Kovaleva N. Yu. Raevskaya E. G., & Roshchin A. V. (2020). Plastic waste pyrolysis – a review. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 4(2), 48–79. https://doi.org/10.25514/CHS.2020.1.17004.

Kovaleva N. Yu. (2023). Processing of biomass and plastics waste by their copyrolysis – a review. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 4(2), 48–79. 7(2), 95–133. https://doi.org/10.25514/CHS.2023.2.25007.

Pat. 5,330,623. U.S. 1994.

Pat.5,387,321. U.S. 1995.

Zaker A., Chen Z., Wang X.L., & Zhang Q. (2019). Microwave-assisted pyrolysis of sewage sludge: a review. Fuel Process Technol; 187, 84–104. https://doi.org/10.1016/j.fuproc.2018.12.011

Capodaglio A. G, & Callegari A. (2018). Feedstock and process influence on biodiesel produced from waste sewage sludge. J Environ Manage, 216:176–82 https://doi.org/10.1016/j.jenvman.2017.03.089

Lam, S. S., & Chase, H. A. (2012). A review on waste to energy processes using microwave pyrolysis. Energies, 5(10), 4209‒4232. https://doi.org/10.3390/en5104209.

Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and sustainable energy reviews, 28, 317‒330. https://doi.org/10.1016/j.rser.2013.08.008.

Mahari, W. A. W., Chong, C. T., Cheng, C. K., Lee, C. L., Hendrata, K., Yek, P. N. Y., & Lam, S. S. (2018). Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy, 162, 309‒317. https://doi.org/10.1016/j.energy.2018.08.002.

Lam, S.S., Liew, R. K., Cheng, C. K., Rasit, N., Ooi, C. K., Ma, N. L., & Chase, H. A. (2018). Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. Journal of environmental management, 213, 400‒408. https://doi.org/10.1016/j.jenvman.2018.02.092.

Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L., & Hamoda, M. (2007). Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Research, 41(11), 2457‒2466. https://doi.org/10.1016/j.watres.2007.03.008.

Kappe, C. O., Stadler, A., & Dallinger, D. (2012). Microwaves in organic and medicinal chemistry (Vol. 52). John Wiley & Sons. http://dx.doi.org/10.1002/9783527647828.

Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035.

Bhattacharya, M., & Basak, T. (2016). A review on the susceptor assisted microwave processing of materials. Energy, 97, 306–338. 10.1016/j.energy.2015.11.034.

Putra, P. H. M., Rozali, S., Patah, M. F. A., & Idris, A. (2022). A review of microwave pyrolysis as a sustainable plastic waste management technique. Journal of environmental management, 303, 114240. https://doi.org/10.1016/j.jenvman.2021.114240.

Sun, J., Wang, W., & Yue, Q. (2016). Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, 9(4), 231. https://doi.org/10.3390/ma9040231.

Russell, A. D., Antreou, E. I., Lam, S. S., Ludlow-Palafox, C., & Chase, H. A. (2012). Microwave-assisted pyrolysis of HDPE using an activated carbon bed. RSC advances, 2(17), 6756‒6760.

Zhang, X., & Hayward, D. O. (2006). Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chimica Acta, 359(11), 3421‒3433.

Udalov, E. I., Bolotov, V. A., Tanashev, Y. Y., Chernousov, Y. D., & Parmon, V. N. (2011). Pyrolysis of liquid hexadecane with selective microwave heating of the catalyst. Theoretical and Experimental Chemistry, 46, 384‒392.

Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min, M., ... & Ruan, R. (2017). Microwave-Assisted Pyrolysis of Biomass for Bio-Oil. Pyrolysis, 129. https://doi.org/10.1016/j.measurement.2017.04.030

Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1‒8. https://doi.org/10.1016/j.fuproc.2009.08.021

Zhang, Y., Cui, Y., Liu, S., Fan, L., Zhou, N., Peng, P., ... & Ruan, R. (2020). Fast microwave-assisted pyrolysis of wastes for biofuels production–A review. Bioresource technology, 297, 122480. https://doi.org/10.1016/j.biortech.2019.122480.

Gupta, M., & Leong, E. W. W. (2008). Microwaves and metals. John Wiley & Sons. https://doi.org/10.1002/9780470822746

Moulart, A., Marrett, C., & Colton, J. (2004). Polymeric composites for use in electronic and microwave devices. Polymer Engineering & Science, 44(3), 588‒597. https://doi.org/10.1002/pen.20053

Jiles, D. (2015). Introduction to magnetism and magnetic materials. CRC press. https://doi.org/10.1201/b18948.

Gieras, J. F., Piech, Z. J., & Tomczuk, B. (2018). Linear synchronous motors: transportation and automation systems. CRC press. https://doi.org/10.1201/b11105

Hu, G., Gao, F., Liu, L., Xu, B., & Liu, Z. (2012). Microstructure and dielectric properties of highly tunable BaО0,6SrО0,4TiO3/MgO/Al2O3/ZnO composite. Journal of alloys and compounds, 518, 44‒50. https://doi.org/10.1016/j.jallcom.2011.12.105.

Sturm, G. S. J., Stefanidis, G. D., Verweij, M. D., Van Gerven, T. D. T., & Stankiewicz, A. I. (2010). Design principles of microwave applicators for small-scale process equipment. Chemical Engineering and Processing: Process Intensification, 49(9), 912‒922. https://doi.org/10.1016/j.cep.2010.07.017.

Undri, A., Rosi, L., Frediani, M., & Frediani, P. (2014). Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel, 116, 662-671. 10.1016/j.fuel.2013.08.037

Aguado, R., Olazar, M., San José, M. J., Gaisán, B., & Bilbao, J. (2002). Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy & fuels, 16(6), 1429-1437.

Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., Liu, Y., ... & Ruan, R. (2017). Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Conversion and Management, 149, 432-441.

Aguado, J., Serrano, D. P., San Miguel, G., Castro, M. C., & Madrid, S. (2007). Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis, 79(1-2), 415-423. https://doi.org/10.1016/j.jaap.2006.11.008

Cypres, R. (1987). Aromatic hydrocarbons formation during coal pyrolysis. Fuel Processing Technology, 15, 1-15. https://doi.org/10.1016/0378-3820(87)90030-0.

Suriapparao, D. V., & Vinu, R. (2015). Resource recovery from synthetic polymers via microwave pyrolysis using different susceptors. Journal of analytical and applied pyrolysis, 113, 701-712. https://doi.org/10.1016/j.jaap.2015.04.021

Kruse, T. M., Wong, H. W., & Broadbelt, L. J. (2003). Mechanistic modeling of polymer pyrolysis: polypropylene. Macromolecules, 36(25), 9594-9607. https://doi.org/10.1021/ma030322y

Wong, H. W., & Broadbelt, L. J. (2001). Tertiary resource recovery from waste polymers via pyrolysis: neat and binary mixture reactions of polypropylene and polystyrene. Industrial & engineering chemistry research, 40(22), 4716-4723. https://doi.org/10.1021/ie010171s.

Tsuge, S., Ohtani, H., & Watanabe, C. (2011). Pyrolysis-GC/MS data book of synthetic polymers: pyrograms, thermograms and MS of pyrolyzates. Elsevier.

Undri, A., Frediani, M., Rosi, L., & Frediani, P. (2014). Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 35-42. https://doi.org/10.1016/j.jaap.2013.10.001.

Aishwarya, K. N., & Sindhu, N. (2016). Microwave assisted pyrolysis of plastic waste. Procedia technology, 25, 990-997. https://doi.org/10.1016/j.protcy.2016.08.197

Rex, P., Masilamani, I. P., & Miranda, L. R. (2020). Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. Journal of the Energy Institute, 93(5), 1819-1832. https://doi.org/10.1016/j.joei.2020.03.013.

Mahari, W. A. W., Chong, C. T., Cheng, C. K., Lee, C. L., Hendrata, K., Yek, P. N. Y., ... & Lam, S. S. (2018). Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy, 162, 309-317. https://doi.org/10.1016/j.energy.2018.08.002.

Juliastuti, S. R., Hendrianie, N., Ramadhan, P. J., & Satria, D. H. (2017, May). Microwave pyrolysis of multilayer plastic waste (LDPE) using zeolite catalyst. In AIP Conference Proceedings (Vol. 1840, No. 1). AIP Publishing. https://doi.org/10.1063/1.4982331.

Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., & Olazar, M. (2012). Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal, 207, 27-34. https://doi.org/10.1016/j.cej.2012.06.105.

Zhang, X., Lei, H., Yadavalli, G., Zhu, L., Wei, Y., & Liu, Y. (2015). Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel, 144, 33‒42. https://doi.org/10.10as16/j.fuel.2014.12.013.

Tian, Y., Zuo, W., Ren, Z., & Chen, D. (2011). Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology, 102(2), 2053-2061.

Bu, Q., Lei, H., Ren, S., Wang, L., Holladay, J., Zhang, Q., ... & Ruan, R. (2011). Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresource technology, 102(13), 7004-7007.

Fan, L., Su, Z., Wu, J., Xiao, Z., Huang, P., Liu, L., ... & Ruan, R. (2021). Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: Effects of parameter conditions. Journal of Analytical and Applied Pyrolysis, 157, 105213. https://doi.org/10.1016/j.jaap.2021.105213.

Jing, X., Dong, J., Huang, H., Deng, Y., Wen, H., Xu, Z., & Ceylan, S. (2021). Interaction between feedstocks, absorbers and catalysts in the microwave pyrolysis process of waste plastics. Journal of cleaner production, 291, 125857. https://doi.org/10.1016/j.jclepro.2021.125857.

Zhou, N., Dai, L., Lv, Y., Li, H., Deng, W., Guo, F., ... & Ruan, R. (2021). Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 418, 129412. https://doi.org/10.1016/j.cej.2021.129412.

Hong, K., Fu, W., Guang, M., Zhang, Y., & Li, B. (2021). Microwave heating performances of low density polyethylene (LDPE) plastic particles. Journal of Analytical and Applied Pyrolysis, 160, 105356.

Khaghanikavkani, E. M. F. M., Farid, M. M., Holdem, J., & Williamson, A. (2013). Microwave pyrolysis of plastic. J. Chem. Eng. Process Technol, 4(10.4172), 2157-7048. http://dx.doi.org/10.4172/2157-7048.1000150.

Prathiba, R., Shruthi, M., & Miranda, L. R. (2018). Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Waste Management, 76, 528-536. https://doi.org/10.1016/j.wasman.2018.03.029.

Rosi, L., Bartoli, M., & Frediani, M. (2018). Microwave assisted pyrolysis of halogenated plastics recovered from waste computers. Waste Management, 73, 511-522. https://doi.org/10.1016/j.wasman.2017.04.037.

Moriwaki, S., Machida, M., Tatsumoto, H., Otsubo, Y., Aikawa, M., & Ogura, T. (2006). Dehydrochlorination of poly(vinyl chloride) by microwave irradiation. Applied thermal engineering, 26(7), 745-750. https://doi.org/10.1016/j.applthermaleng.2005.09.001.

Moriwaki, S., Machida, M., Tatsumoto, H., Kuga, M., & Ogura, T. (2006). Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation. Journal of Environmental Conservation Engineering 36 (4), 273-281, 2007.

Ludlow-Palafox, C., & Chase, H. A. (2001). Microwave-induced pyrolysis of plastic wastes. Industrial & engineering chemistry research, 40(22), 4749-4756. https://doi.org/10.1021/ie010202j

Bartoli, M., Rosi, L., Frediani, M., Undri, A., & Frediani, P. (2015). Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis. Journal of analytical and applied pyrolysis, 113, 281-287. https://doi.org/10.1016/j.jaap.2015.01.026.

Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., ... & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 1316-1325. https://doi.org/10.1016/j.enconman.2019.07.001.

Juliastuti, S. R., Hendrianie, N., Ramadhan, P. J., & Satria, D. H. (2017, May). Microwave pyrolysis of multilayer plastic waste (LDPE) using zeolite catalyst. In AIP Conference Proceedings (Vol. 1840, No. 1). AIP Publishing. https://doi.org/10.1063/1.4982331.

Moriwaki, Saburo; Machida, Motoi; Tatsumoto, Hideki; Kuga, Masumi; Ogura, Toshio (2006) Activation Energy for the Dehydrochlorination Reaction on Poly (Vinyl Chloride) by Microwave Irradiation. Journal of the Japan Society of Waste Management Experts, 17(4), 293‒298.

Yu, H., Qu, J., Liu, Y., Yun, H., Li, X., Zhou, C., ... & Bi, X. (2022). Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: Distribution of chlorine. Science of The Total Environment, 806, 150903. https://doi.org/10.1016/j.scitotenv.2021.150903.

Dai, M., Xu, H., Yu, Z., Fang, S., Chen, L., Gu, W., & Ma, X. (2018). Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Applied Thermal Engineering, 136, 9-15. https://doi.org/10.1016/j.applthermaleng.2018.02.102.

Tang, Y., Huang, Q., Sun, K., Chi, Y., & Yan, J. (2018). Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic. Bioresource technology, 249, 16‒23. https://doi.org/10.1016/j.biortech.2017.09.210.

Yin, C. (2012). Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresource technology, 120, 273-284. https://doi.org/10.1016/j.biortech.2012.06.016.

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308‒326 https://doi.org/10.1016/j.enconman.2016.02.037.

Sun, J., Wang, W., & Yue, Q. (2016). Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, 9(4), 231. https://doi.org/10.3390/ma9040231.

Wu, Z. S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., ... & Cheng, H. M. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS nano, 3(2), 411-417. https://doi.org/10.1021/nn900020u.

Arshad, H., Sulaiman, S. A., Hussain, Z., Naz, M. Y., & Moni, M. N. Z. (2021). Effect of input power and process time on conversion of pure and mixed plastics into fuels through microwave-metal interaction pyrolysis. Waste and Biomass Valorization, 12, 3443-3457. https://doi.org/10.1007/s12649-020-01225-9.

Ge, S., Yek, P. N. Y., Cheng, Y. W., Xia, C., Mahari, W. A. W., Liew, R. K., ... & Lam, S. S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renewable and Sustainable Energy Reviews, 135, 110148. https://doi.org/10.1016/j.rser.2020.110148.

Hussain, Z., Khan, K. M., Basheer, N., & Hussain, K. (2011). Co-liquefaction of Makarwal coal and waste polystyrene by microwave–metal interaction pyrolysis in copper coil reactor. Journal of Analytical and Applied Pyrolysis, 90(1), 53-55. https://doi.org/10.1016/j.jaap.2010.10.002.

Hussain, Z., Khan, K. M., Perveen, S., Hussain, K., & Voelter, W. (2012). The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel processing technology, 94(1), 145-150. https://doi.org/10.1016/j.fuproc.2011.10.009.

Arshad, H., Sulaiman, S. A., Hussain, Z., & Moni, M. N. Z. (2020, May). Effect of reaction time and microwave power on coil temperature during microwave-metal interaction pyrolysis of plastics. In IOP Conference Series: Materials Science and Engineering (Vol. 863, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1757-899X/863/1/012007.

Hussain, Z., Khan, K. M., & Hussain, K. (2010). Microwave–metal interaction pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis, 89(1), 39‒43. https://doi.org/10.1016/j.jaap.2010.05.003.

State, R. N., Volceanov, A., Muley, P., & Boldor, D. (2019). A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresource technology, 277, 179-194. https://doi.org/10.1016/j.biortech.2019.01.036.

Rex, P., Masilamani, I. P., & Miranda, L. R. (2020). Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. Journal of the Energy Institute, 93(5), 1819-1832. https://doi.org/10.1016/j.joei.2020.03.013.

Lam, S. S., Mahari, W. A. W., Ok, Y. S., Peng, W., Chong, C. T., Ma, N. L., ... & Tsang, D. C. (2019). Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews, 115, 109359. https://doi.org/10.1016/j.rser.2019.109359

Li, L., Wang, H., Jiang, X., Song, Z., Zhao, X., & Ma, C. (2016). Microwave-enhanced methane combined reforming by CO2 and H2O into syngas production on biomass-derived char. Fuel, 185, 692-700. https://doi.org/10.1016/j.fuel.2016.07.098

Ma, R., Huang, X., Zhou, Y., Fang, L., Sun, S., Zhang, P., ... & Zhao, X. (2017). The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures. Bioresource Technology, 238, 616-623. https://doi.org/10.1016/j.biortech.2017.04.103.

Muley, P. D., Henkel, C. E., Aguilar, G., Klasson, K. T., & Boldor, D. (2016). Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor. Applied Energy, 183, 995-1004. https://doi.org/10.1016/j.apenergy.2016.09.047.

Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S., & Read, A. G. (2005). Microwave technology for energy-efficient processing of waste. Applied energy, 81(1), 85-113. https://doi.org/10.1016/j.apenergy.2004.07.002.

Опубликован
2025-06-23
Как цитировать
Ковалева, Н. (2025). Перспективы применения микроволнового излучения для пиролиза различных видов пластиковых отходов. Химическая безопасность, 9(1), 105 - 137. https://doi.org/10.25514/CHS.2025.1.28006
Раздел
Утилизация и биодеградация отходов