Структурные особенности супрамолекулярного дифенилфосфинсодержащего пероксодихлорокомплекса Rh(III), как определяющий фактор каталитической активности

  • Е.В. Гусева Федеральное государственное бюджетное образовательное учреждение высшего образования Казанский национальный исследовательский технологический университет, Казань, Россия https://orcid.org/0000-0002-2367-8012
  • Е.В. Фесик Федеральное государственное бюджетное образовательное учреждение высшего образования МИРЭА - Российский технологический университет, Москва, Россия https://orcid.org/0000-0003-3041-7037
Ключевые слова: функциональные свойства, тетрадифенилфосфинсодержащий каликс[4]резорцин, супрамолекулярный тетрадифенилфосфинсодержащий пероксодихлорокомплекс Rh(III), комплексно-радикальная полимеризация виниловых мономеров, гомогенное разложение муравьиной кислоты, состав, строение, взаимосвязь.

Аннотация

Показана взаимосвязь между функциональными свойствами комплекса {KP1·4[RhIII (O2)·2(Cl-)]} и его составом на примере реакций комплексно-радикальной полимеризации виниловых мономеров (метилметакрилат, винилацетат) и гомогенного дегидрирования муравьиной кислоты. Выявленные закономерности протекания реакций в присутствии комплекса показали значительную роль пероксид-радикалов. Немаловажную роль выполняют объемные дифенилфосфиновые фрагменты и каликсрезорциновая матрица, способные выступать как регуляторы перераспределения электронной плотности совместно с ионами родия.

Литература

Guseva E.V., & Fesik E.V. (2024). Comparative assessment of the composition and properties of rhodium and platinum compounds with P(III)-derivatives of calix[4]resorcins. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 8(2), 78–110. https://doi.org/10.25514/CHS.2024.2.26006.

Illés, G., Németh, C., Hidas, K.I., Surányi, J., Tóth, A., Pajor, F., & Póti, P. (2022). Synthesis of New Type Polymers by Quasi-Living Atom Transfer Radical Polymerization. Polymers (MDPI), 14(14), 2795–2819. https://doi.org/10.3390/polym14142795.

Takano, Sh., Kochi, T., & Kakiuchi, F. (2016). Synthesis and Reactivity of Phosphine-Quinolinolato Rhodium Complexes: Intermediacy of Vinylidene and (Amino)carbene Complexes in the Catalytic Hydroamination of Terminal Alkynes. Organometal., 35 (24), 4112–4125. https://doi.org/10.1021/acs.organomet.6b00853.

Rubio-Perez L., Azpiroz R., Di Giuseppe A., Polo V., Castarlenas R., Perez-Torrente J. J., & Oro L. A. (2013). Pyridine-Enhanced Head-to-Tail Dimerization of Terminal Alkynes by a Rhodium–N-Heterocyclic-Carbene Catalyst. Chem. Eur. J., 19(45), 15304‒15314. http://dx.doi.org/10.1002/chem.201302079.

Evans P.A. (2005). Modern Rhodium - Catalyzed Organic Reactions. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

Bauder, C., & Sémeril D. (2019). Styrene hydroformylation with cavity-shaped ligands. J. Eur. Inorg. Chem., 2019(47), 4951–4965. https://doi.org/10.1002/ejic.201900974.

Gavrilova, E.L., Naumova, A.A., Shatalova, N.I., Burilov, A.R., Pudovik, M.A., Krasil’nikova, & E.A., Konovalov, A.I. (2008). The New Type of Calix[4]Resorcines Bearing Phosphonates and Phosphonium Fragments at The Lower Rim. Phosphorus, Sulfur, and Silicon, and the Related Elements, 183(2), 561‒565.

Naumova, A.A., (2008). Synthesis of calix[4]resorcins phosphorylated along the upper and lower layers of the molecule and obtaining their complexing ability in reactions with compounds Pt(II), Pd(II), Rh(II), Rh(III) (Ph.D. dissertation). Kazan: Kazan State Technological University (in Russ.).

Guseva, E.V., Buslaeva, T.M., & Polovnyak, V.K. (2015). Complexation of Rhodium and Platinum with P-Functionalized Calix[4]resorcins. Rus. J. Inorg. Chem., 60(7), 823–831. http://dx.doi.org/10.1134/S0036023615070062.

Potapova, A.V. (2013). Synthesis and properties of Rh (II, III) complexes with phosphorus-containing calix[4]resorcins. (Ph.D. dissertation). Kazan: Kazan National Research Technological University (in Russ.).

Guseva, E.V., Morozov, V.I., Karimova, D.T., Gavrilova, E.L., Naumova, A.A, Polovnyak, V.K., & Krasil’nikova, E.A. (2010). Reaction of Rhodium Trichloride with P-Functionalized Calix[4]resorcinols in Various Media. Rus. J. Gen. Chem., 80(1), 47‒59. https://doi.org/10.1134/S1070363210010081.

Guseva, E.V., Fesik, E.V., & Potapova, A.V. (2022). Catalytic Activity of Supramolecular Dimethylamine- and Diphenylphosphine-Containing RhIII Peroxodichloro-Complexes on the Example of Studying the Kinetics of Homogeneous Dehydrogenation of Formic Acid. Macroheterocycles, 15(3), 195‒203. https://doi.org/10.6060/mhc224591g.

Guseva, E.V., & Potapova, A.V. (2019). Complex radical polymerization of methyl methacrylate in the presence of tetra {peroxodichlorophosphinrodium (III)} calix [4] resorcinol. Trends in the development of science and education, (49), part 12, 38–42 (in Russ.). http://dx.doi.org/10.18411/lj-04-2019-252.

Guseva, E.V., & Potapova, A.V. (2019). Simalation of the mechanism of the reaction of homogeneous dehydrogenation of formic acid in the presence of a complex compound Rh(III) with P-functionalized calix[4]resorcine. Polish J. Science, 1(14), 12–19.

Guseva, E.V., Sokolova, A.V., Saifutdinov, A.M., Naumova, A.A., & Polovnyak, V.K. (2012). Kinetics of Homogeneous Dehydrogenation of Formic Acid in the Presence of Supramolecular Rhodium(III) Complex with P-Functionalized Calix[4]resorcine. Rus. J. Gen. Chem., 82(5), 827–834. https://doi.org/10.1134/S1070363212050040.

Guseva, E.V., Potapova, A.V., Sayfutdinov A.M., & Grishin E.I. (2011). Homogenious Decomposition of Formic Asid by Complexes of Rh (III) with P-Funktionalized Calyx[4]resorcine. Part I. Aggregation and catalytic properties. Bull. Kazan Technological University, 14 (6), 16–23 (in Russ.).

Guseva, E.V., Potapova, A.V., Sayfutdinov, A.M., & Grishin, E.I. (2011). Homogenious Decomposition of Formic Asid by Complexes of Rh (III) with P-Funktionalized Calyx[4]resorcine. Part II. Quantum-chemical modelling of the reaction mechan. Bull. Kazan Technological University, 14(6), 290–296 (in Russ.).

Guseva, E.V., Polovnyak, V.K., & Potapova, A.V. (2011). The effect of the supramolecular rhodium(III) complex with P-functionalized calix[4]resorcinol on the kinetic features of the complex radical polymerization of methyl methacrylate and vinyl acetate. Scientific and technical Bulletin of the Volga region, 6, 60–67 (in Russ.).

Potapova, A.V., Guseva, E.V., & Sayfutdinov, A.M. (2011). Influence of the Supermolecular Complexes of Rh (III) with P-funktsionalized Calyx[4]resorcine on Kinetic Features of Complex-Radical Polymerization of Methyl Methacrylate. Bull. Kazan Technological University, 14(3), 51–57 (in Russ.).

Shibaeva, V.P., Lachinov, M.B., & Chernikova, E.V. (2002). Methodological developments for practical work on the synthesis of IUD: in 2 volumes. V. 2. Moscow: Moscow State University (in Russ.).

Toroptseva, A.M., Belogorodskaya, K.V., & Bondarenko, V.M. (1972). Laboratory workshop on chemistry and technology of high molecular weight compounds. L: Chemistry (in Russ.).

Lavnikova, I.V., Zheltobryukhov, V.F., Rakhimov, A.I., & Storozhakova N.A. (2002). Polymerization of methyl methacrylate in the presence of N-acetyl-e-aminocaproic acid acetylamide. Rus. J. Applied Chem., 75(2), 302–304.

Korbar, A., & Malavasic, T. (1995). Influence of differet initiators on methyl methacrylate polymerization, studied by differential scanning calorimewry. J. Therm. Anal., 44, 1357–1365.

Xia, J., Paik, H.J., & Matyjaszewski K. (1999). Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules, 32(25), 8310–8314. https://doi.org/10.1021/ma991075u

Gan, W., Dyson, P.J., & Laurenczy, G. (2009). Hydrogen Storage and Delivery: Immobilization of a Highly Active Homogeneous Catalyst for the Decomposition of Formic Acid to Hydrogen and Carbon Dioxide. React. Kinet. Catal. Lett., 98(2), 205–213.

http://dx.doi.org/10.1007/s11144-009-0096-z.

Boddien, A., Loges, B., Junge, H., & Beller, M. (2008). Hydrogen Generation at Ambient Conditions: Application in Fuel Cels. Chem. Sus. Chem., 1(8–9), 751–758. https://doi.org/10.1002/cssc.200800093.

Fukuzumi, S., Kobayashi, T., & Suenobu, T. (2008). Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution. Chem. Sus. Chem., 1(10), 827-834. https://doi.org/10.1002/cssc.200800147.

Al-Nayili, A., Majdi, H. Sh., Albayati, T. M., & Cata Saady, N. M. (2022). Formic Acid Dehydrogenation Using Noble-Metal Nanoheterogeneous Catalysts: Towards Sustainable Hydrogen-Based Energy. Catalysts, 12, 324–340. https://doi.org/10.3390/catal12030324.

Salavatov, T. Sh., Bayramova, A. S., & Vorobʹev, K. A. (2021). Using carbon dioxide as a chemical raw material. The Eurasian Scientific Journal, 13(2). https://esj.today/PDF/03NZVN221.pdf.

Denisov, E.T. (1988) Kinetics of Homogeneous Chemical Reactions. Moscow: Graduate School

.Hetterscheid, D. G. H., & De Bruin, B. (2006). Open-shell rhodium and iridium species in (catalytic) oxygenation reactions. J. Mol. Catalysis A: Chem., 251(1–2), 291–296. https://doi.org/10.1016/j.molcata.2006.02.009.

Moszner, M. (2004). Water replacement on decaaqua-di-rhodium(II)-cation; synthesis of superoxo and peroxo rhodium(III) complexes with N-donor ligands. Inorg. Chim. Acta, 357. 3613–3620. https://doi.org/10.1016/j.ica.2004.04.021

Anderson, J.E., Yao C.L., & Kadish K.M. (1986). Electroreduction of the Dioxygen Adduct of Rhodium Tetraphenylporphyrin: (TPP)Rh(02). Inorg. Chem., 25(18), 3224–3228. https://doi.org/10.1021/ic00238a027.

Wayland, B.B., Newman, A.R. (1981). Dioxygen and Nitric Oxide Complexes of Rhodium Porphirins. Inorg. Chem., 20(9), 3093–3097. https://doi.org/10.1021/ic50223a067.

Raynor, J.B., Gillard, R.D., & Pedrosa de Jesus, J. D. (1982). Paramagnetic Dioxygen Complexes of Rhodium. J. Chem. Soc. Dalton Trans., (6), 1165–1166. https://doi.org/10.1039/DT9820001165.

Wayland, B. B., & Newman, A.R. (1979). Dioxygen Complexes of Rhodium Porphirins. J. Am. Chem. Soc., 101(21), 6472–6473. https://doi.org/10.1021/ja00515a073.

Vaska, L. (1976). Dioxygen‒Metal Complexes: Toward a Unified View. Acc. Chem. Res., 9(5), 175–183. https://doi.org/10.1021/ar50101a002.

Yanilkin, V.V., Ryzhkina, I.S., Nastapova, N.V., Pashirova, T.N., Babkina, Y.A., Burilov, A.R., Morozov, V.I., & Konovalov, A.I. (2003). Single-electron oxidation and nucleophilicity of aminomethylated calix[4]resorcinarenes. Russ. Chem. Bull., 52, 1142‒1149. https://doi.org/10.1023/A:1024713408780.

Rotov, A.V., Zhilyaev, A.N. Baranovsky, I.B., & Larin, G.M. (1989). Effect of ligands on the electronic structure of β-diketonate complexes of RhII according to ESR data. J. Inorg. Chem., 34(7), 1899‒1901 (in Russ.).

Vrielinck, H., Sabbe, K., Callens, F., & Matthys, P. (2001). Detection of charge compensating cation vacancies near Rh2+ complexes in AgCl and NaCl using Q-band ENDOR. Phys. Chem. Chem. Phys., 3(9), 1709‒1716. https://doi.org/10.1039/b008244i.

Cotton, F. A., Murillo, C. A., & Wolton, R. A. (2005). Multiple Bonds Between Metal Atoms. New York: Springer Science and Business Media. P. 465‒567, P. 707–796.

Kadish, K. M., Phan, T. D., Giribabu, L., Caemelbecke, E. V., & Bear, J. L. (2003). Substituent and isomer effects on structural, spectroscopic, and electrochemical properties of dirhodium(III, II) complexes containing four identical unsymmetrical bridging ligands. Inorg. Chem., 42(26), 8663‒8673. https://doi.org/10.1021/Ic034963L.

Kawamura, T., Katayama H., Nishikawa, H., & Yamabe, T. (1989). Ligand dependence of electronic configuration of the Rh-Rh bond in Rh25+ complexes as studied by electron spin resonance and electrochemistry. J. Am. Soc., 111(21), 8156‒8160. https://doi.org/10.1021/ja00203a015.

Kawamura, T., Fukamachi, K., Soba, T., Hayashida, S., & Yonezawa, T (1981). Electronic structure of Rh-Rh bond in Rh2(O2CR)4(PY3)2 by electron spin resonance study of their cation radicals. J. Am. Chem. Soc., 103(2), 364‒369. https://doi.org/10.1021/ja00392a021.

Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, P. B: Applications in Coordination, Organometallic and Bioinorganic Chemistry. New York: Wiley.

Lever, A. B. P. (1987). Inorganic Electronic spectroscopy: in 2 volumes. Amsterdam-Oxford-New York-Tokyo: Elsevier.

Sverdlova, O.V. (1985). Electronic spectra in organic chemistry. L.: Chemistry (in Russ.).

Nifantiev, E.V., & Vasyanina, L.K. (1987). 31P NMR spectroscopy. Moscow: Printing house Mosk. State Ped. Institute named after IN AND. Lenin (in Russ.).

Konovalov, L.V. (1984). Spectral and structural study of metal-chlorine stretching vibrations in complex compounds of platinum metals (Os, Ir, Ru, Rh). Coordination chemistry, 10(10), 1401‒1406 (in Russ.).

Konovalov, L.V. (2000). On the dependence of interatomic distances and the strength of metal-ligand bonds on the state of metal oxidation. Coordination Chemistry, 26 (2), 83–85 (in Russ).

Glinskaya, L.A., Yurchenko, E.N., Solodovnikov, S.F., Gracheva, L.S., & Klevtsova, R.F. (1982). Crystal structure and IR spectra of di-μ-chloro-bis(diisopropylphosphite)(diisopropyl-phosphite)(carbonyl) chlororhodium(III) ([RhCl2(CO){P(OCH3H7)2O}2H]2). Journal of Structural Chemistry, 23(3), 79–85 (in Russ).

Shagidullin, R.R., Mukhametov, F.S., & Nigmatullina, R.B. (1977). Atlas of IR spectra of organophosphorus compounds. M.: Science (in Russ.).

Kondyurin, A., Rautenberg, C., Steiner, G., Habicher, W.D., & Salzer, R. (2001). Vibrational spectra of calix[4]resorcinarene isomers. J. Mol. Struct., (563–564), 503–511. http://dx.doi.org/10.1016/S0022-2860(01)00455-0

Опубликован
2024-12-13
Как цитировать
Гусева, Е., & Фесик, Е. (2024). Структурные особенности супрамолекулярного дифенилфосфинсодержащего пероксодихлорокомплекса Rh(III), как определяющий фактор каталитической активности. Химическая безопасность, 8(2), 111 - 127. https://doi.org/10.25514/CHS.2024.2.27007
Раздел
Материалы с новыми функциональными свойствами