Сравнительная оценка состава и свойств соединений родия и платины с P(III)-производными каликс[4]резорцинов
Аннотация
Проведена сравнительная оценка влияния исходных соединений – производных каликс[4]резорцинов, содержащих функциональные группы по нижнему ободу молекулы (арилдифенилфосфины либо арилтрифенилфосфониобромиды или арилдиэтиламинодифенилфосфониобромиды), растворителей (ацетон, этанол) и соединений металлов {RhCl3∙nH2O, [Rh2(AcO)4 2H2O], PtCl4}на состав и строение супрамолекулярных комплексов. Установленные закономерности по совместному влиянию органических сред, соединений металлов, P(III)-производных каликс[4]резорцинов на образование продуктов и наблюдаемая зависимость между функциональными свойствами супрамолекулярных комплексов и их составом и строением открывают новые возможности для получения соединений с заранее программируемыми свойствами.
Литература
Al-Nayili, A., Majdi, H. Sh., Albayati, T.M., & Cata Saady, N.M. (2022). Formic Acid Dehydrogenation Using Noble-Metal Nanoheterogeneous Catalysts: Towards Sustainable Hydrogen-Based Energy. Catalysts, 12, 324–340. https://doi.org/10.3390/catal12030324.
Hai-Long, Jiang, Sanjay Kumar Singh, Jun-Min, Yan, Xin-Bo, Zhang, & Qiang, Xu (2010). Liquid-Phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions. Chem.Sus.Chem., 3(5), 541–549. https://doi.org/10.1002/cssc.201000023.
Fukuzumi, S., Kobayashi, T., & Suenobu, T. (2008). Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution. Chem. Sus. Chem., 1(10), 827–834. https://doi.org/10.1002/cssc.200800147.
French, S. (2020). The Role of Zero and Low Carbon Hydrogen in Enabling the Energy Transition and the Path to Net Zero Greenhouse Gas Emissions. Johnson Matthey Technol. Rev. 64(3), 357–370. https://doi.org/10.1595/205651320X15910225395383.
Salavatov T.Sh., Bayramova A.S., & Vorobʹev K.A. (2021). Using carbon dioxide as a chemical raw material. The Eurasian Scientific Journal, 13(2). https://esj.today/PDF/03NZVN221.pdf.
Braunecker, W.A., Brown, W.C., Morelli, B.C., Tang, W., Poli, R., & Matyjaszewski, K. (2007). Origin of Activity in Cu-, Ru- and Os-Mediated Radical Polymerization. Macromolecules, 40(24), 8576–8585. https://doi.org/10.1021/ma702008v.
Moineau, G., Granel, C., Dubois, Ph., Jerome, R., & Teyssie, Ph. (1998). Controlled radical polymerization of methyl methacrylate initiated by an alkyl halide in the presence of the Wilkinson catalyst. Macromolecules, 31(2), 542–544. https://doi.org/10.1021/ma971123f.
Farrell, N.P. (2015). Multi-Platinum Anticancer Agents. Substitution-Inert Compounds for Tumor Selectivity and New Targets. Chem. Soc. Rev., 44, 8773‒8785. https://doi.org/10.1039/c5cs00201j https://doi.org/10.1002/ejoc.201601125.
Aguirre, J.D., Angeles-Boza, A.M, Chouai, A., Turro, Cl., Pellois, J.-Ph., Dunbar, K.R. (2009). Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. J. Chem. Soc., Dalton Trans, 48, 10806–10812. https://doi.org/10.1039/B915357H.
Gavrilova, E.L., Naumova, A.A., Shatalova, N.I., Burilov, A.R., Pudovik M. A., Krasil’nikova E.A., & Konovalov, A. I. (2008). The New Type of Calix[4]Resorcines Bearing Phosphonates and Phosphonium Fragments at The Lower Rim. Phosphorus, Sulfur, and Silicon, and the Related Elements, 183(2), 561‒565.
. Jain, V.К., & Kanaiy, P.H. (2011). Chemistry of calyx[4]resorcinarenes. Russ. Chem. Rev., 80(1), 77–106 (in Russ.). https://doi.org/10.1070/RC2011v080n01ABEH004127.
Hudson, R.F. (1965). Structure and mechanism in organo-phosphorus chemistry. London‒New York: Academic Press.
Tolman, C. A. (1977). Steric Effects of Phosporus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev., 77(3), 313–346 https://doi.org/10.1021/cr60307a002.
Fesik, E.V., & Guseva, E.V. (2023). Comparative assessment of the composition of the products of the interaction of [Rh2(AcO)4·2H2O] with P(III)-derivative of calyx[4]resorcinuin organic environments (ethanol, acetone) and the study of bactericidal properties in oil biodegradation processes. Advances in Chemistry and Chemical Technology, 37 (17), 115–120 (in Russ.).
Guseva, E.V., Buslaeva, T.M., & Polovnyak, V.K. (2015). Complexation of Rhodium and Platinum with P-Functionalized Calix[4]resorcins. Rus. J. Inorg. Chem., 60(7), 823–831. http://dx.doi.org/10.1134/S0036023615070062.
Potapova, A.V. (2013). Synthesis and properties of Rh (II, III) complexes with phosphorus-containing calix[4]resorcins. (Ph.D. dissertation). Kazan: Kazan National Research Technological University (in Russ.).
Guseva, E.V., Morozov, V.I., Karimova, D.T., Gavrilova, E.L., Naumova, A.A, Polovnyak, V.K., & Krasil’nikova, E.A. (2010). Reaction of Rhodium Trichloride with P-Functionalized Calix[4]resorcinols in Various Media. Rus. J. Gen. Chem., 80(1), 47‒59. https://doi.org/10.1134/S1070363210010081.
Guseva, E. V., Gavrilova, E. L., Naumova, A. A, Morozov, V. I., Shatalova, N. I., Karimova, D. T., & Polovnyak, V. K. (2008). Complexes of Dirhodium(II) Carboxylates with Calix[4]resorcinarenes Functionalized at the Upper and Lower Rim of the Molecule with P,N-containing Fragments. Rus. J. Gen. Chem., 78 (12), 2308‒2316. https://doi.org/10.1134/S1070363208120049.
Naumova, A.A., (2008). Synthesis of calix[4]resorcins phosphorylated along the upper and lower layers of the molecule and obtaining their complexing ability in reactions with compounds Pt(II), Pd(II), Rh(II), Rh(III) (Ph.D. dissertation). Kazan: Kazan State Technological University (in Russ.).
Guseva, E.V., Fesik, E.V., & Potapova, A.V. (2022). Catalytic Activity of Supramolecular Dimethylamine- and Diphenylphosphine-Containing RhIII Peroxodichloro-Complexes on the Example of Studying the Kinetics of Homogeneous Dehydrogenation of Formic Acid. Macroheterocycles, 15 (3), 195‒203. https://doi.org/10.6060/mhc224591g.
Guseva, E.V., Sakhno, T.V., Kutlakhmetova, A.R., & Fesik E. V. (2022). Evaluation of bactericidal and antioxidant properties of functionalized calix[4]resorcinols and of rhodium complexes based on them. Chemical Safety Science, 6(1), 106‒131 (in Russ.). https://doi.org/10.25514/CHS.2022.1.21007.
Guseva, E.V., & Fesik, E.V. (2022). Catalytic activity of rhodium(III) and dirodium(II)complexes with calix[4]phosphine by the example of the homogeneous dehydrogenation reaction of formic acid. Proceedings of the XXIII International Chernyaev Conference on Chemistry, Analytics and Technology of Platinum Metals. Novosibirsk: A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences. P. 138 (in Russ.).
Guseva, E.V., Polovnyak, V.K., & Potapova, A.V. (2011). The effect of the supramolecular rhodium(III) complex with P-functionalized calix[4]resorcinol on the kinetic features of the complex radical polymerization of methyl methacrylate and vinyl acetate. Scientific and technical Bulletin of the Volga region, 6, 60–67 (in Russ.).
Guseva, E.V., & Fesik, E.V. (2024). Comparative assessment of the composition and properties of rhodium compounds with supramolecules. Chemical Safety Science, 8(1), 53–90 (in Russ).
Chernyaev, I.I. (1964). Synthesis of complex compounds of platinum group metals: guide. M.: Science (in Russ.).
Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, P. B: Applications in Coordination, Organometallic and Bioinorganic Chemistry. New York: Wiley.
Lever, A. B. P. (1987). Inorganic Electronic spectroscopy: in 2 volumes. Amsterdam-Oxford-New York-Tokyo: Elsevier.
Brown, D., Floyd, A., Sainsbury, M. (1992). Organic Spectroscopy. John Wiley & Sons, Ltd.
Buslaeva, T.M., & Simanova, S.A. (2003). The state of platinum metals in solutions. In: Analytical chemistry of platinum group metals. M.: Unified URSS (in Russ.).
Cotton, F.A., Murillo, C.A., Wolton, R.A. (2005). Multiple Bonds Between Metal Atoms. New York: Springer Science and Business Media. P. 465‒567, P. 707–796.
Sizova, O.V., & Ivanova, N.V. (2006). Electronic structure and spectra of rhodium(II) tetracarboxylate complexes. Rus. J. Coord. Chem., 32(6), 444–450. https://doi.org/10.1134/S107032840606008X.
Bradley, M.P., Bursten, E.B., & Turro, C. (2001). Excited-State Properties of Rh2(O2CCH3)4(L)2 (L = CH3OH, THF, PPh3, Py). Inorg. Chem., 40(6), 1376‒1379. https://doi.org/10.1021/ic0009573.
Nifantiev, E.V., & Vasyanina, L.K. (1987). 31P NMR spectroscopy. Moscow: Printing house Mosk. State Ped. Institute named after IN AND. Lenin (in Russ.).
Kukushkin, Yu.N. (1987). Reactivity of coordination compounds. L.: Chemistry (in Russ.).
Shagidullin, R.R., Mukhametov, F.S., & Nigmatullina, R.B. (1977). Atlas of IR spectra of organophosphorus compounds. M.: Science (in Russ.).
Kondyurin, A., Rautenberg, C., Steiner, G., Habicher, W.D., & Salzer, R. (2001). Vibrational spectra of calix[4]resorcinarene isomers. J. Mol. Struct., (563–564), 503–511. http://dx.doi.org/10.1016/S0022-2860(01)00455-0.
Karataeva, F.H., & Klochkov, V.V. (2012). NMR spectroscopy in organic chemistry: in 2 parts. Part I. The general theory of NMR. Chemical shifts of 1H and 13C. Kazan: Kazan Federal University (in Russ.).
Krasilnikova, E.A. Sentemov, V.V., & Gavrilova, E.L. (1993). Synthesis of amidophosphonium salts by reaction of aryl halides with acid amides P(III) in the presence of Ni(II) salts. Journal of General Chemistry, 63(4), 848-851 (in Russ.).
Reimann, E. (1969). Large scale preparation of 2,4-dihydroxybenzaldehyde using a variation of the Vilsmeierhaack reaction and isolated intermediates. Chem. Ber., 102, 2881–2888.
Fialkov, Yu.Ya. (1990) Solvent as a means of controlling reactions. L.: Chemistry (in Russ.).
Belyaev, A.V. Fedotov, M.A., Korsunsky, V.I., Venediktov, A.B. , & Khranenko, S.P. (1984). On the structure of polynuclear rhodium(III) chlorides. Coordination Chemistry, 10(7), 911‒918. (in Russ.).
Belyaev, A.B., Venediktov, A.B., & Khranenko, S.P. (1983) On the nature of rhodium chlorides. Coordination Chemistry, 9(1), 120‒129 (in Russ.).
Konovalov, L.V. (1984). Spectral and structural study of metal-chlorine stretching vibrations in complex compounds of platinum metals (Os, Ir, Ru, Rh). Coordination chemistry, 10(10), 1401‒1406 (in Russ.).
Yesina, N.Ya., Kurasova, M.N., Malaga, U.M., Molodkin, A.K., & Tachaev, M.V. (2011). Complexation of rhodium(III) with hypoxanthine and adenine. Scientific and Technical Bulletin of the Volga region, (6), 71–75 (in Russ).
Konovalov, L.V. (2000). On the dependence of interatomic distances and the strength of metal-ligand bonds on the state of metal oxidation. Coordination Chemistry, 26 (2), 83–85 (in Russ).
Glinskaya, L.A., Yurchenko, E.N., Solodovnikov, S.F., Gracheva, L.S., & Klevtsova, R.F. (1982). Crystal structure and IR spectra of di-μ-chloro-bis(diisopropylphosphite)(diisopropyl-
phosphite)(carbonyl) chlororhodium(III) ([RhCl2(CO){P(OCH3H7)2O}2H]2). Journal of Structural Chemistry, 23(3), 79–85 (in Russ).
Preti C., & Tosi G. (1977). New Rhodium(III), Iridium(III), Palladium(I1) and Platinum(I1) Complexes containing benzoxazolie-2-thione as ligand. J. Coord. Chem., 7, 35–41.
Clark, R. J. H. (1990) Synthesis, structure, and spectroscopy of metal–metal dimers, linear chains, and dimer chains. Chem. Soc. Rev., 19, 107–131. https://doi.org/10.1039/CS9901900107
Clark, R. J. H., & Hempleman, A. J. (1988). Infrared, Raman, resonance Raman, and excitation profile studies of Rh2(O2CCH3)4(PPh3)2 and its O18 and CD3 isotopomers. Inorg. Chem., 27(13), 2225–2229. https://doi.org/10.1021/ic00286a005.
Mazo, G.Ya. Baranovsky, I.B., & Shchelokov, R.N. (1979). Investigation of IR absorption spectra of rhodium(II) carboxylate complexes with various axial ligands. Journal of Inorganic Chemistry, 24(12), 3330–3336 (in Russ).
Kharitonov, Yu.Ya., Mazo, G.Ya., & Knyazeva, N.A. Investigation of IR absorption spectra of rhodium formate and acetate complexes. In: Vibrational spectra in inorganic chemistry. Moscow: Nauka (pp. 314-341) (in Russ). (pp. 186–194) (in Russ.).
Mustafina, A.R., Skripacheva, V.V., & Konovalov, A.I. (2007). The external Quter-sphere association of calixarenes and other macrocyclic ligands with metal complexes as the basis for the design of molecular devices. Russ. Chem. Rev., 76(10), 979–993. https://doi.org/10.1070/RC2007v076n10ABEH003727
Pregosin, P.S., & R.W. Kunz (1979). NMR Basic Principles and Progress. Berlin: Springer-Verlag. 16, 155. https://doi.org/10.1002/mrc.1270130617.
Guseva, E. V., Kutlakhmetova, A. R., & Sakhno, T. V. (2014).Properties of P-functionalized calix[4]resorcins. Part 1, 2. Bull. Kazan Technological University, 17 (20), 7–9, 14–17 (in Russ.).
Lavnikova, I.V., Zheltobryukhov, V.F., Rakhimov, A.I., & Storozhakova N.A. (2002). Polymerization of methyl methacrylate in the presence of N-acetyl-e-aminocaproic acid acetylamide. Rus. J. Applied Chem., 75(2), 302–304.
Korbar, A., & Malavasic, T. (1995). Influence of differet initiators on methyl methacrylate polymerization, studied by differential scanning calorimewry. J. Therm. Anal., 44, 1357–1365.
Xia, J., Paik, H.J., & Matyjaszewski K. (1999). Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules, 32(25), 8310–8314. https://doi.org/10.1021/ma991075u
Guseva E.V., & Fesik E.V. (2024). Structural features of supramolecular diphenylphosphine-containing peroxodichloro complex Rh(III) as a determining factor of catalytic activity. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 8(2), 111–127 https://doi.org/10.25514/CHS.2024.2.27007.
Copyright (c) 2024 Е.В. Гусева, Е.В. Фесик

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.