Влияние факторов космического полета на макро- и микроэлементный баланс у человека
Аннотация
Обзорная статья посвящена изучению макро- и микроэлементного баланса в биологических субстратах с точки зрения химической и радиационной безопасности космических полетов.
Литература
Grigoriev,A.I., M.A. Ostrovsky,M.A. & A.N. Potapov, A.N. (2020).Contribution of Researchers of the Russian Academy of Sciences to the Origin and Development of Space Physiology. Human physiology, 46(1), 5–12. https://doi.org/10.1134/S0362119720010089.
Fedorov V.I. (2005). On the problem of determining trace elements in human blood serum. Analytics and control, 9(4), 358–366.
Nagase, H., & Woessner, J.F. (1999).Matrix metalloproteases. Journal BiologicalChemistry, 274(30), 21491-21494. https://doi.org/10/1074/jbc.274.31.21491.
Zitka, O., Krizkova, S., & Huska, D. (2010). Matrix metalloproteinases. Current medicinal chemistry, 17(31), 3751–3768. https://doi.org/10.2174/092986710793213724.
Grigoriev, A.I., Volozhin, A.I.,&. Stupakov, G.P. (1994).Mineral metabolism in humans under conditions of altered gravity.M.: NAUKA ISBN 5-02-004564-0. (in Russ.).
Grigoriev, A.I., Larina, I.M. & Noskov, V.B. (2006).The influence of space flights on the state and regulation of water and electrolyte metabolism. (2006). Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = Russian Physiological Journal I.M. Sechenov, 1, 5–17 (in Russ).
Larina, I. M. (2000).Calcium Metabolism and Its Regulation in Man during Adaptation to Microgravitation. Human physiology, 26(5), 588–599. https://doi.org/10.1007/bf02760375.
Larina, I. M. & Verigo, V.V. (2000). Calcium Metabolism and a Mars Mission: New Problems. Human physiology,26(4), 462–467. https://doi.org/10.1007/bf02760276.
Morukov, B. V.,Larina, I. M. & Grigoriev,A. I. (1998).Calcium Metabolism and Its Regulation in Humans during a Long-Term Space Flight. Human physiology,24(2), 221.
Morukov, B.V.,Grigoriev,A.I. & Larina, I.M. (1999). Особенности обмена кальция в невесомости. Rossiyskiy fiziologicheskiy zhurnalim. I.M. Sechenova = Russian Physiological Journal I.M. Sechenova, 6, 835–846 (in Russ.).
Morukov, B.V., Natochin, Yu.V.,Larina, I.M. &Noskov, V.B. (2003). Water-salt metabolism and kidney function in space flights and ground-based model experiments. Rossiyskiy fiziologicheskiy zhurnalim. I.M. Sechenova = Russian Physiological Journal I.M. Sechenova, 3, 356–367 (in Russ.).
Prostyakov, I.V.,Novikov, V.E. & Morukov, B.V. (2010). Bone Mineral Density and Microarchitecture in Participants of a 105-Day Experimentin Isolated Environment. Human physiology, 36(4), 473–477. https://doi.org/10.1134/S0362119710040146
Morukov, B.V. (1999). Regulation of mineral metabolism under conditions of prolonged hypokinesia and space flight (D.Med.Sc. dissertation). Moscow: Institute of Biomedical Problems of the Russian Academy of Sciences (in Russ.).
Marshall, William J. (2008).Clinical chemistry.Edinburg [etc.]: Elsevier.ISBN 0723434557, 9780723434559.
Piruzian, L.A., Protasova, O.V., Maksimova, I.A., Morukov, B.V., Ushakov, I.B., & Protasov, S.V. (2014). Calcium and phosphorus contents of human body during 105-day isolation.Human Physiology 40(7), 822–826. https://doi.org/10.1134/S0362119714070226.
Tucker, K.L., Hannan, M.T., Chen, H., Cupples, L.A., Wilson, P.W. & Kiel D.P.(1999). Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. American Journal of Clinical Nutrition, 69(4), 727–736. https://doi.org/10.1093/ajcn/69.4.727.
Tu, Q., Pi, M., & Quarles, L.D. (2003). Calcyclin mediates serum response element (SRE) activation by an osteoblastic extracellular cation-sensing mechanism. J Nutrition, 133(11), 3625–3629. https://doi.org/10.1359/jbmr.2003.18.10.1825.
Nieves J.W. (2005).Osteoporosis: the role of micronutrients. American Journal of Clinical Nutrition, 81(5), 1232–1239. https://doi.org/10.1093/ajcn/81.5.1232.
Cernak, I., Savic, V., Kotur, J., Prokic, V., Kuljic, B., Grbovic, D. &Veljovic M. (2000). Alterations in magnesium and oxidative status during chronic emotional stress. Magnesiumresearch, 13(1), 29–36.
Grases, G., Perez-Castello, J.A., Sanchis, P., Casero, A., Perello, J., Isern, B., Rigo, E. & Grases F. (2006). Anxiety and stress among science students. Study of calcium and magnesium alterations. Magnesium research, 19(2), 102–106.
Murck, H. (2002). Magnesium and affective disorders. Nutritional Neuroscience, 5(6), 375–389. https://doi.org/10.1080/1028415021000039194.
Mocci, F., Canalis, P. & Tomasi, P.A. (2001). The effect of noise on serum and urinary magnesium and catecholamines in humans. Occuppational Medicine, 51(1), 56–61. https://doi.org/10.1093/occmed/51.1.56.
Poleszak, E.,Wlaź, P., Kedzierska, E ., Nieoczym, D,Wyska, E., Szymura-Oleksiak, J., Fidecka, S. & Nowak, G (2006). Immobility stress induces depression-like behaviour in the forced swim test in mice: effect of magnesium and imipramine. Pharmacological reports, 58(5), 746–752.
Gisèle Pickering , André Mazur, Marion Trousselard, Przemyslaw Bienkowski, Natalia Yaltsewa, Mohamed Amessou, Lionel Noah, & Etienne Pouteau (2020). Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients 12(12), 3672; https://doi.org/10.3390/nu12123672.
Ashmarin I.P. &Stukalov P.V. (1996). Neurochemistry. M.:IBMH.ISBN 5-900760-02-2 (in Russ.).
Cernak, I., Savic, V., Kotur, J., Prokic, V., Kuljic, B., Grbovic, D. & Veljovic, M. (2000). Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma, 17(1), 53–68. https://doi.org/10.1089/neu.2000.17.53.
Groenestege, W.M., Hoenderop, J.G., van den Heuvel, L. &Knoers, N. (2006). The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am SocNephrol., 17(4), 1035–1043. https://doi.org/10.1681/ASN.2005070700.
Loren, W. Runnels. (2018). TRPM6 and TRPM7: A Mul-TRP-PLIK-Cation of Channel Functions. Curr Pharm Biotechnol., 12(1), 4–53. https://doi.org/10.2174/138920111793937880.
Schlingmann, K.P. &Gudermann, T. (2005). A critical role of TRPM channel-kinase for human magnesium transport. J Physiol., 15(566), 301–308. https://doi.org/10.1113/jphysiol.2004.080200.
Pickering, G, Mazur, A., Trousselard, M, Bienkowski, P, Yaltsewa, N, Amessou,M, Noah, L. & Pouteau, E. (2020). Magnesium status and stress: The vicions circle concept revisited. Nutrients, 28(12), 3672–3677. https://doi.org/10.3390/nu12123672.
Voets, T., Nilius, B. & Hoefs S. (2004). TRPM6 Forms the Mg2+ influx channel involved in intestinal and renal Mg2+ Absorption. J Biol Chem., 279(1), 19–25. https://doi.org/10.1074/jbc.274.31.21491.
Piruzyan, L.A.,Protasova, O.V., Maksimova, I.A., Morukov, B.V., Protasov, S.V.& Ushakov, I.B. (2014).Magnezium in the human body during a 105-day isolation. Human Phisiology, 40(7), 822–826. https://doi.org/10.1134/S0362119715070178.
Protasova, G.A., Popov, V.B., Shabasheva, L.V., Protasov, S.V., Maksimova, I.A., Krupyansky,Yu.F., Protasova, O.V., & Ushakov, I.B. (2017). An integrated approach to the assessment of pathogenic factors in blood samples of testers under the conditions of the Mars-500 model experiment. Molekulyarnya medicina = Molecular Medicine, 15(4), 58–63 (in Russ.).
Kumeda, Y. & Inaba, M. (2005). Metabolic syndrome and magnesium. Clin Calcium, 15(11), 97–104.
Avtsyn, A.P. &Zhavoronkov, A.A. (1991). Human microelementoses. M.: Mir ISBN 5-225-02128-X. (in. Russ.).
Nozdryukhina, L.R. &Grinkevich, N.I. (1980). Disturbances of microelement metabolism and ways of its correction. M.: Nauka. (in. Russ.).
Spencer, H., Samachson, J., Nardin, E.P. & Rivera, J. (1972). Joftest of orally and intravenously administered stable strontium on 90Sr metabolism in man. Radiation. Research., 51(1),190–203.
Protasova, O.V., Maksimova, I.A., Morukov, B.V., Protasov, S.V. & Ushakov, I.B. (2016). Study of Iron, Zinc, Stable Strontium, and Lithium Contents in Biological Fluids and Tissues in an Experiment Simulating Space Flight Conditions.Human Physiology, 42(7), 788–792. https://doi.org/10.1134/S0362119716070148.
AliZamaniab, Gholamhossein, R., Omraniab, Masoud, MousaviNasabc. (2009). Lithium's effect on bone mineral density. Bone, 44(2), 331–334. https://doi.org/10.1016/j.bone.2008.10.001.
Oberlis, D., Harland, B., & SkalnyA. (2008). Biological role of macro-microelements in humans and animals. St. Petersburg: Nauka ISBN 978-5-02-025305-6 (in Russ.).
Brich, N.J. (1982). Inorganic Drugs in Deficiency and Desease. Metal. Ions in Biological. Sistemst. New York, Marcel Dekker. P. 257.
Dell'Osso, L., Del Grande, C., Gesi, C., Carmassi, C. & Musetti, L. (2016). A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts.Neuropsychiatr Dis Treat., 12, 1687–1703. https://doi.org/10.2147/NDT.S106479.
Zanni, G.,Goto, S., Fragopoulou, A.F., Gaudenzi, G., Naidoo, V., Di Martino, Levy,G.,Dominguez, C.A., Dethlefsen, O., Cedazo-Minguez,A., E., Merino-Serrais, P., Stamatakis, A., Ola Hermanson, O., & Blomgren K. (2021). Lithium treatment reverses irradiation-induced changes in rodent neural progenitors and rescues cognition. Molecular Psychiatry, 26(1),322–340. https://doi.org/10.1038/s41380-019-0584-0.
Eichhorn, G. (1978). Inorganic biochemistry. N. Y.: Elsevier Scientific Publishing Company.
Piruzyan, L.A., O.V. Protasova, O.V., Maksimova, I.A., Morukov, B.V., Protasov, S.V. & Ushakov, I.B. (2015). Investigation of the cooper content in blood serum and its ultrafiltrate in the condition of experimental space flight simulation. Human Physiology, 42(7), 750–754. https://doi.org/10.1134/S036211971507018X.
Brazhe, N.A., Baizhumanov, A.A., Parshina, E.Yu., Yusipovich, A.I., Akhalaya, M.Ya., Yarlykova, Yu.V., Labetskaya, O.I., Ivanova, S.M., Morukov, B.V.& Maksimov G.V.(2011). Studies of the blood antioxidant systems and oxygen-transporting properties of human erytrhrocytes during 105-day isolation. Aviakosmicheskay ekologicheskay medicina = Aerospace and ecological medicine, 45(1), 40–45.
Grigoriev, A.L., Ivanova, S.M., Morukov, B.V. & Maksimov, G.V. (2008). Development of cell hypoxia induced by factor of long-term space flight. Doklady biochemistry and biophysics, 422(1), 308–311. https://doi.org/10.1134/S1607672908050141.
Puzan, N.D. & Cheshik, I.A. (2023). Molecular mechanisms of effects of ionizing radiation action. Irradiation effect on protein (literary review). Medical and Biological Problems of Life Activity, 1(29), 14–26 (In Russ.). https://doi.org/10.58708/2074-2088.2023-1(29)-14-26.
Yarmonenko, S.P. (1988). Radiobiology of humans and animals. M.: Mir (in. Russ.).
Protasova, O.V.,Maksimova, I.A., Cheprasov, V.YU. & Nikiforov, A.M. (2001).Altered balance of macroelements and trace elements in blood serum, its Ultrafiltrates, and Hairs long after exposure to low doses of ionizing radiation. Biology Bulletin, 28(4), 344–349. https://doi.org/10.1023/A:1016662805301.
Baleva, L.S., Pulatova, M.K., Vartanyan, L.S., Sharygin, V.L., Sipyagina, A.E., Sharf, V.G., Smotryaeva, M.A., Nagler, L.G., Gurevich, S. M. & Kozachenko, A.I. (1996).Consequences of the Chernobyl disaster: human health. M.: Russian Agricultural Academy, P. 267–287. ISBN 5-88587-019-5 (in.Russ).
Protasova, O.V., Maksimova, I.A., Aleksanin, S.S., Nikiforov, A.M. & Zybina, N.N. (2008). Pathogenetic role of disturbances in macro- and microelement balance in biological fluids and tissues of liquidators. In the book. Liquidators of the consequences of the accident at the Chernobyl nuclear power plant: pathology of the long-term period and features of medical support (a guide for doctors). ELBI St. Petersburg (pp. 142–147).ISBN978-5-93979-201-1 (in Russ.).
Copyright (c) 2024 О.В. Протасова, Ю.Ф. Крупянский, И.А. Максимова

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.