Атмосферные радикальные реакции при горении толуола в воздухе
Аннотация
Горение толуола в воздухе сопровождается образованием различного вида токсикантов. Рассмотрены элементарные реакции свободных радикалов, сопровождающих процесс горения. Реакции оксидов азота с бензильными радикалами играют одну из главных ролей в трансформации толуола в воздухе. Метод конкурирующих реакций был применен как основной кинетический инструмент для определения констант скорости реакций реакции оксидов азота с бензильными радикалами. Бензильные и гидроксиэтильные радикалы получали в реакциях атомов хлора с толуолом и этанолом. Реакция оксидов азота с гидроксиэтильными радикалами была использована как конкурирующая реакция. Концентрации реагентов и продуктов реакций определялись методами масс-спектрометрии. Получена температурная зависимость отношения констант скорости этих реакций.
Литература
Niranjan, R., & Thakur, A.K. (2017). The Toxicological Mechanisms of Environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Front Immunol., 8, 763. https://doi.org/10.3389/fimmu.2017.00763
Dagaut, P., Pengloan, G., & Ristori, A. (2002). Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling. Phys. Chem. Chem. Phys., 4(10), 1846–1854. https://doi.org/10.1039/B110282F
Dockery, D.W., Pope, C.A., Xu, X., et al. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine, 329(24), 1753–1759. https://doi.org/10.1056/NEJM199312093292401
Semadeni, M., Stocker, D.W., & Kerr, J.A. (1995). The temperature dependence of the OH radical reactions with some aromatic compounds under simulated tropospheric conditions. Int. J. Chem.Kinet., 27(3), 287‒304. https://doi.org/10.1002/kin.550270307
Baulch, D.L., Cobos, C.J., Cox, R.A., et al. (1992) Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data, 21(3), 411–734. https://doi.org/10.1063/1.555908
Markect, F., & Pagsberg, P. (1993). UV spectra and kinetics of radicals produced in the gas phase reactions of Cl, F and OH with toluene. Chem. Phys. Lett., 209(5-6), 445‒454. https://doi.org/10.1016/0009-2614(93)80115-6
Baulch, D.L., Cobos, C.J., Cox, R. A., et al. (1994). Evaluated kinetic data for combusion modelling. Supplement I. J. Phys. Chem. Ref. Data, 23(6), 847–1033. https://doi.org/10.1063/1.555953
Oehlschlaeger, M.A., Davidson, D.F., & Hanson, R.K. (2006). Investigation of the reaction of toluene with molecular oxygen in shock-heated gases. Combust. Flame, 147(3), 195–208. https://doi.org/10.1016/j.combustflame.2006.08.006
Cher, M. (1964) The reaction of methyl radicals with toluene. J. Phys. Chem., 68(6), 1316–1321. https://doi.org/10.1021/j100788a009
Lai, L., & Green, W.H. (2019). Thermochemistry and kinetics of intermolecular addition of radicals to toluene and alkylaromatics. J. Phys. Chem. A, 123(14), 3176–3184. https://doi.org/10.1021/acs.jpca.9b00817
Ma, Y.M., Su, K.H., Zhang, J., et al. (2015). Hydrogen abstraction mechanisms and reaction rates of toluene+NO3. J. Mol. Model., 21, 207. https://doi.org/10.1007/s00894-015-2749-3
Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref. Data, 20(3), 459–507. https://doi.org/10.1063/1.555887
Kerr, J.A., & Parsonage, M.J. (1972). Evaluated kinetic data on gas phase addition reactions. Reactions of atoms and radicals with alkenes, alkynes and aromatic compounds, Publ. London: Butterworths.
Ellis, C., Scott, M.S., & Walker, R.W. (2003). Addition of toluene and ethylbenzene to mixture of H2 and O2 at 772 K: Part 2: Formation of products and determination of kinetic data for H plus additive and for other elementary reactions involved. Combust. Flame, 132(3), 291–304. https://doi.org/10.1016/S0010-2180(02)00439-X
Hippler, H., Reihs, C., Troe, J. (1991). Shock tube UV absorption study of the oxidation of benzyl radicals. In: Symp. Int. Combust. Proc. 23 (pp. 37–43). https://doi.org/10.1016/S0082-0784(06)80239-0.
Bartels, M., Edelbuttel-Einhaus, J., & Hoyermann, K. (1989). The reactions of benzyl radicals with hydrogen atoms, oxygen atoms, and molecular oxygen using EI/REMPI mass spectrometry, In: Symp. Int. Combust. Proc. 22, 1041. https://doi.org/10.1016/S0082-0784(89)80114-6.
Brooks, C.T., Cummins, C.P.R., & Peacock, S.J. (1971). Pyrolysis of toluene using a static system. Trans. Faraday Soc., 67, 3265–3274. https://doi.org/10.1039/TF9716703265.
Luther, K., Oum, K., Sekiguchi, K., & Troe, J. (2004). Recombination of benzyl radicals: dependence on the bath gas, temperature, and pressure. Phys. Chem. Chem. Phys., 6(16), 4133–4141. https://doi.org/10.1039/B407074G
Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, et al. (1994). Evaluated kinetic data for combusion modelling. Supplement I. J. Phys. Chem. Ref. Data, 23(6), 847–1033. https://doi.org/10.1063/1.555953
Miyoshi, A., Matsui, H., & Washida, N. (1989). Reactions of hydroxyethyl radicals with oxygen and nitric oxide. Chem. Phys. Lett., 160(3), 291–294. https://doi.org/10.1016/0009-2614(89)87598-0.
Wang, X., Song, J., & Meng, Z. (2019).Kinetic study and rate coefficient calculations of the reaction of 1-hydroxyethyl radical with nitric oxide. J. Phys. Chem. A, 123, 7544–7549. https://doi.org/10.1021/acs.jpca.9b03500.
Boyd, A.A., Noziere, B., Lesclaux, R. (1995) Kinetics and thermochemistry of the reversible combination reactions of the allyl and benzyl radicals with NO. J. Phys. Chem., 99(27), 10815–10823. https://doi.org/10.1021/j100027a022
Heinemann-Fielder, P., & Hoyermann, K. (1988) The application of multi-photon ionization mass spectrometry to the study of the reactions O + C2H4, F + C3H6, F + c-C3H6, F + CH3OH, H + CH2OH and O + CH3O. Ber. Bunsenges Phys Chem., 92(12), 1472–1477. https://doi.org/10.1002/bbpc.198800354
Morozov, I.I., & Hoyermann, K. (1997). Multiphoton ionization of BrO radicals generated by the reaction O + Br2 =>BrO +Br. Doklady physical chemistry, 355(1-3), 212–215.
Hold, M., Hoyermann, K., Morozov, I., & Zeuch, T. (2009). CH2Cl and CHCl2 radical chemistry: The formation by the reactions CH3Cl + F and CH2Cl2 + F and the destruction by the reactions CH2Cl + O and CHCl2 + O. Zeitschrift Phys. Chem., 223, 409–426. https://doi.org/10.1524/zpch.2009.6044
Edelbüttel-Einhaus, J., Hoyermann, K., Rohde, G., & Seeba, J. (1992). The detection of the hydroxyethyl radical by rempi/mass-spectrometry and the application to the study of the reactions CH3CHOH+O and CH3CHOH+H. Symposium (International) on Combustion, 24(1), 661–668. https://doi.org/10.1016/S0082-0784(06)80081-0
Daële, V., Ray, A., Vassalli, I., et al. (1995). Kinetic study of reactions of C2H5O2 with NO at 298 K and 0.55–2 torr. Int. J. Chem. Kinet., 27(11), 1121–1133. https://doi.org/10.1002/kin.550271109
Copyright (c) 2023 И.И. Морозов, Е.С. Васильев, Д.Х. Дансюрюн, А.Г. Сыромятников, О.С. Морозова, Н.Н. Кузнецова, С.В. Савилов, С.Ю. Купреенко, К.О. Синюков, О.А. Ольхов

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.