ХИМИЧЕСКАЯ БЕЗОПАСНОСТЬ, 2018, Том 2, № 2,

с. 35 — 44

 

Наноразмерные объекты и наноматериалы

 

УДК 544.03                                                                              Скачать PDF 

DOI: 10.25514/CHS.2018.2.14099

 

АДСОРБЦИОННЫЕ СВОЙСТВА ЗАРЯЖЕННЫХ НАНОЧАСТИЦ НИКЕЛЯ

С. Ю. Сарвадий*, А. К. Гатин, М. В. Гришин, Б. Р. Шуб

Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской академии наук, Москва, Россия,

Поступила в редакцию 07.11.2018 г.

Опубликовано 26.12.2018 г.

Аннотация — В работе представлены результаты исследований структуры и физических характеристик наночастиц никеля, нанесенных на подложки графита, кремния, алюминия и титана, а также адсорбционные свойства наночастиц по отношению к водороду и воде. Свойства наноструктурированных систем изучались методами сканирующей туннельной микроскопии и спектроскопии. Показано, что такие физические параметры наночастиц, как форма и размер, практически не зависят от природы подложки, в то время как она оказывает существенное влияние на адсорбционные процессы.

Ключевые слова: наночастицы никеля, графит, кремний, алюминий, титан, водород, вода, адсорбция, взаимодействие.

____________________________________________________________________

ADSORPTION PROPERTIES OF CHARGED NICKEL NANOPARTICLES

 S. Yu. Sarvadii*, A. K. Gatin, M. V. Grishin, and B. R. Shub

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia,

Received November 07, 2018

Published December 26, 2018

Abstract – The paper presents results of studying structural and physical characteristics of nickel nanoparticles deposited on supports of graphite, silicon, aluminum, and titanium. Adsorption properties of the nanostructured compositions have been investigated with respect to hydrogen and water molecules. Properties of the nanostructured systems have been examined by scanning tunneling microscopy and spectroscopy. The study has found that shape and size of nanoparticles are practically not affected by nature of support, while a significant impact of support has been revealed for adsorption properties, apparently due to an excessive charge of the nanoparticles. The adsorption results for H2O molecules correlate with the charge sign of the nanoparticles due to the effects associated with the orientation of the H2O dipole molecules. The adsorption of the non-polar hydrogen molecule is not influenced by the charge sign, but correlates with the total value of the resulting excessive charge of the nickel nanoparticles. The results obtained contribute to characterization of nickel-based nanoparticles, which are not only an object of increased interest from basic science, but are already being used in environmental monitoring systems providing leakage control for a variety of hazardous substances in industry.

Keywords: nickel nanoparticles, graphite, silicon, aluminum, titanium, hydrogen, water, adsorption, interaction.


Список литературы:

1. Бухтияров В.И., Слинько М.Г. // Усп. хим. 2001. Т. 70. № 2. С. 179.
2. Cuenya B.R. // Thin Solid Films. 2010. V. 518. P. 3127.
3. Capasso L., Camatini M., Gualtieri M. // Toxicol. Lett. 2014. V. 226. P. 28.
4. Borse P.H., Yi J.M., Je J.H. et al. // Nanotechnology. 2004. V. 15. P. S389.
5. Rostovshchikova T.N., Smirnov V.V., Gurevich S.A. et al. // Catal. Today. 2005. V. 105. P. 344.
6. Lokteva E.S., Peristyy A.A., Kavalerskaya N.E. et al. // Pure Appl. Chem. 2012. V. 84. No. 3. P.495.
7. Кавалерская Н.Е., Локтева Е.С., Ростовщикова Т.Н., Голубина Е.В., Маслаков К.И. //Кинетика и катализ. 2013. T. 54. № 5. C. 631.
8. Scanning Tunnelling Microscopy I. General principles and applications to clean and absorbate-covered surfaces. Ed. by H.-J. Guntherodt, R. Wiesendanger. Berlin: Springer-Verlag, 1992. Р.246.
9. Binnig G., Rohrer H., Berber C., Weibel E. // Appl. Phys. Lett. 1981. V. 40. No. P. 178.
10. Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy. Berlin: Springer, 2004. P. 210.
11. Hamers R.J., Wang Y.J. // Chem. Rev. 1996. V. 96. No. 4. P. 1261.
12. Hamers R.J., Tromp R.M., Demuth J.E. // Phys. Rev. Lett. 1986. V. 56. No. 18. P. 1972.
13. Гатин А.К., Гришин М.В., Далидчик Ф.И. и др. // Хим. физика. 2006. T. 25. № 6. C. 17.
14. Song W., Yoshitake M. // Appl. Surf. Sci. 2005. V. 251. P. 14.
15. Chapman R.A. // J. Appl. Phys. 1964. V. 35. P. 2832.
16. Heinke L., Lichtenstein L., Simon G. H. et al. // ChemPhysChem. 2010. V. 11. P. 2085.
17. Irwin M.D., Buchholz D.B., Hains A.W. et al. // Proc. Natl. Acad. Sci. 2008. V. 105. No. 8. P.2783.
18. Mo S.-D., Ching W.Y. // Phys. Rev. B. 1995. V. 51. P. 13023.
19. Tang H., Prasad K., Sanjines R., Schmid P. E., Levy F. // J. Appl. Phys. 1994. V. 75. P. 2042.
20. Faes A., Jeangros Q., Wagner J.B. et al. // ECS Transactions. 2009. V. 25. No. 2. P. 1985.
21. Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. // Appl. Phys. A. 1998. V. 66.P.S125.
22. Физические величины. Справ. под ред. Н.С. Григорова, Е.З. Мейлихова. М.:Энергоатомиздат, 1991. 1232 с.

References:

1. Bukhtiyarov V.I., Slin’ko M.G. // Russ. Chem. Rev. 2001. V. 70. No. 2. P. 147. doi:10.1070/RC2001v070n02ABEH000637.
2. Cuenya B.R. // Thin Solid Films. 2010. V. 518. P. 3127. doi: 10.1016/j.tsf.2010.01.018.
3. Capasso L., Camatini M., Gualtieri M. // Toxicol. Lett. 2014. V. 226. P. 28. doi:10.1016/j.toxlet.2014.01.040.
4. Borse P.H., Yi J.M., Je J.H. et al. // Nanotechnology. 2004. V. 15. P. S389. doi:10.1088/0957-4484/15/6/013.
5. Rostovshchikova T.N., Smirnov V.V., Gurevich S.A. et al. // Catal. Today. 2005. V. 105. P. 344.doi: 10.1016/j.cattod.2005.06.034.
6. Lokteva E.S., Peristyy A.A., Kavalerskaya N.E. et al. // Pure Appl. Chem. 2012. V. 84. No. 3.P.495. doi: 10.1351/PAC-CON-11-07-12.
7. Kavalerskaya, N.E., Lokteva, E.S., Rostovshchikova, T.N. et al. // Kinet. Catal. 2013. V. 54.No. 5. P. 597. doi: 10.1134/S0023158413050066.
8.Scanning Tunnelling Microscopy I. General principles and applications to clean and absorbate-covered surfaces. Ed. by H.-J. Guntherodt, R. Wiesendanger. Berlin: Springer-Verlag, 1992. Р.246.
9.Binnig G., Rohrer H., Berber C., Weibel E. // Appl. Phys. Lett. 1982. V. 40. No. P. 178. doi:10.1063/1.92999.
10. Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy. Berlin: Springer, 2004. P. 210.doi: 10.1007/978-3-662-09801-1.
11. Hamers R.J., Wang Y.J. // Chem. Rev. 1996. V. 96. No. 4. P. 1261. doi: 10.1021/cr950213k.
12. Hamers R.J., Tromp R.M., Demuth J.E. // Phys. Rev. Lett. 1986. V. 56. No. 18. P. 1972. doi:10.1103/PhysRevLett.56.1972.
13. Gatin A.K., Grishin M.V., Dalidchik F.I. et al. // Khimicheskaya Fizika. 2006. V. 25. No. 6. P.17 [in Russian].
14. Song W., Yoshitake M. // Appl. Surf. Sci. 2005. V. 251. P. 14. doi:10.1016/j.apsusc.2005.03.116.
15. Chapman R.A. // J. Appl. Phys. 1964. V. 35. P. 2832. doi: 10.1063/1.1713115.
16. Heinke L., Lichtenstein L., Simon G. H. et al. // ChemPhysChem. 2010. V. 11. P. 2085. doi:10.1002/cphc.201000060.
17. Irwin M.D., Buchholz D.B., Hains A.W. et al. // Proc. Natl. Acad. Sci. 2008. V. 105. No. 8. P.2783. doi: 10.1073/pnas.0711990105.
18. Mo S.-D., Ching W.Y. // Phys. Rev. B. 1995. V. 51. P. 13023. 10.1103/Phys. Rev. B.51.13023 .
19. Tang H., Prasad K., Sanjines R., Schmid P. E., Levy F. // J. Appl. Phys. 1994. V. 75. P. 2042.doi: 10.1063/1.356306.
20. Faes A., Jeangros Q., Wagner J.B. et al. // ECS Transactions. 2009. V. 25. No. 2. P. 1985. doi:10.1149/1.3205743.
21. Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. // Appl. Phys. A. 1998. V. 66.P.S125. doi: 10.1007/s003390051.
22. Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Physical values. Reference book;edited by N.S. Grigorov, E.Z. Meylikhov. M.: Energoatomizdat, 1991. 1232 p. [in Russian].