Особенности очистки дициклогексил-18-краун-6 через получение кристаллических стехиометрических комплексов с HN-кислотными органическими молекулами

  • В.Н. Глушко Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия https://orcid.org/0000-0001-6641-8715
  • Н.Ю. Садовская Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия https://orcid.org/0000-0002-5716-5880
  • Л.И. Блохина Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия https://orcid.org/0000-0001-9629-4645
  • С.К. Белусь Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия https://orcid.org/0000-0002-4676-1070
  • В.М. Ретивов Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия https://orcid.org/0000-0002-3649-2778
  • М.Ю. Жила Федеральное государственное унитарное предприятие «Государственный научный центр «НИОПИК», Московская область, Россия https://orcid.org/0000-0001-9828-2904
Ключевые слова: краун-эфиры, комплексообразование, изомеры, гидрирование

Аннотация

Представлена технологичная методика синтеза и очистки дициклогексил-18-краун-6 (ДЦГ18К6) методом жидкофазного каталитического гидрирования ДБ18К6 на рутениевом катализаторе в 50% изопропаноле при повышенном давлении и температуре. Предложен эффективный способ выделения смеси изомеров А и В ДЦГ18К6 и их разделения. Перспективным является применение ДБ18К6, как компонента в различных композитах для эффективного удаления Sr2+ в средах с высокой кислотностью.

Литература

Weber, W. & Gockel, G. (1980). Phase Transfer Catalysis in Organic Synthesis. M.: Mir (in Russ.).

Frensdorff, H.K. (1971). Salt complexes of cyclic polyethers. Distribution equilibriums. J. Am. Chem. Soc., 93(19), 4684 – 4688. https://doi.org/10.1021/ja00748a006

Pedersen, C.J. (1968). Ionic complexes of macrocyclic polyethers. Fed. Proc., 27(6), 1305–1309.

Pedersen, C.J. & Frensdorff, H.K. (1972). Macrocyclic polyethers and their complexes. Angew. Chem. Int. Ed., 11(1), 16–25. https://doi.org/10.1002/anie.197200161

Kimura, T., Iwashima, K., Ishimori, T. & Hamagu, H. (1977). Separation of strontium ion from a large amount of calcium ion by the use of a macrocyclic ether. Chem. Lett., 6(5), 563–564. https://doi.org/10.1246/cl.1977.563

Kimura, T., Iwashima, K., Ishimori, T. & Hamada, T. (1979). Separation of strontium-89 and -90 from calcium in milk with a macrocyclic ether. Anal. Chem., 51(8), 1113–1116. https://doi.org/10.1021/ac50044a005

Pat.2318258, Russian Federation, 2008.

Sadovskaya, N.Yu, Glushko, V.N., Blokhina, L.I, & Retivov, V.M. (2020). Biological activity of crown ethers and their metal complexes. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 4(2), 80–100 (in Russ). https://doi.org/10.25514/CHS.2020.2.18006

Ma, J., Zhang, Y., Ouyang, J., Wu, X., Luo, J., Liu, Sh., & Gong, X. (2019). A facile preparation of dicyclohexano-18-crown-6 ether impregnated titanate nanotubes for strontium removal from acidic solution. Solid State Sciences, 90, 49–55. https://doi.org/10.1016/j.solidstatesciences.2019.02.002

Nesterov, S.V., Zakurdaeva, O.A., Sokolova, N.A., Rudakova, T.A., & Feldman, V.I. (2019). Conformational insight into radiation-chemical transformations of dicyclohexano-18-crown-6 complexes with alkaline earth metal chlorides: Effect of cation size. Radiation Physics and Chemistry, 164, 108368. https://doi.org/10.1016/j.radphyschem.2019.108368

Favre-Réguillon, A., Draye, M., Cote, G., & Czerwinsky, K.R. (2019). Insights in uranium extraction from spent nuclear fuels using dicyclohexano-18-crown-6 – Fate of rhenium as technetium homolog. Separation and Purification Technology, 209, 338–342. https://doi.org/10.1016/j.seppur.2018.07.034

Sappidi, P., Mir, Sh.H., & Singh, J.K. (2018). Effect of polystyrene length for the extraction of Gd3+ and UO22+ ions using dicyclohexano crown ether (DCH18C6) with octanol and nitrobenzene: A molecular dynamics study. J. Mol. Liq., 271, 166–174. https://doi.org/10.1016/j.molliq.2018.08.133

Zakurdaeva, O.A., Nesterov, S.V., & Feldman, V.I. (2017). Stereoisomeric effect in low temperature radiolysis of dicyclohexano-18-crown-6 complexes with BaCl2. Radiation Physics and Chemistry, 130, 379–384. https://doi.org/10.1016/j.radphyschem.2016.09.024

Ye, G., Bai, F., Wei, J., Wang, J., & Chen, J. (2012). Novel polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6): Synthesis, characterization and extraction of Sr(II) in high acidity HNO3 medium. J. Haz. Mat., 225–226, 8–14. https://doi.org/10.1016/j.jhazmat.2012.04.020

Bezhin, N.A., Dovhyi, I.I. (2015). Sorbents based on crown ethers: preparation and application for the sorption of strontium. Russ. Chem. Rev., 84(12), 1279–1293. https://doi.org/10.1070/RCR4505

Glushko, V.N., Blokhina, L.I., Sadovskaya, N.Yu., Pevtsova, L.A., & Belus, S.K. (2014). Special features of preparing benzoaza-12-crown-4 by condensation of o-aminophenol with triethylene glycol dichloride. Russ. J. Gen. Chem., 84(11), 2079–2083.

Glushko, V.N., Tsirulnikova, N.V., Blochina, L.I., Pevtsova, L.A., Sadovskaya, N.Yu., Fetisova, T.S., & Podmareva, O.N. Production technology of macrocyclic polyether dibenzo-18-crown-6 – multipurpose effective reagent. Naukoyomkie tekhnologii, 14(3), 005–010 (in Russ).

Sadovskaya, N.Yu., Glushko, V.N., Baryshnikova, M.A., Afanasyeva, D.A., Zhila, M.Yu., & Belus’, S.K. (2019). Synthesis and investigation of copper complexes with selected azomethine monobenzo crown ether derivatives. Russ. J. Gen. Chem., 89(3), 440–445. https://doi.org/10.1134/S1070363219030125

Glushko, V.N., Sadovskaya, N.Yu., Blokhina, L.I., Zhila, M.Yu., Belus', S.K., Vashchenkova, E.S., & Shmeleva, I.A. Synthesis of isomeric dinitro and diamino derivatives of polycyclic crown ethers: dibenzo-18-crown-6 and dibenzo-24-crown-8. Russ. J. Gen. Chem., 88(8), 1595–1600. https://doi.org/10.1134/S1070363218080078

Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc., 89(26), 7017–7036. https://doi.org/10.1021/ja01002a035

Pedersen, C.J. (1972). Macrocyclic polyethers: dibenzo-18-crown-6 polyether and dicyclohexyl-18-crown-6 polyether. Org. Synth., 52, 66–74. https://doi.org/10.15227/orgsyn.052.0066

Frensdorff, H.K. (1971). Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc., 93(3), 600–606. https://doi.org/10.1021/ja00732a007

Izatt, R.M., Nelson, D.P., Rytting, J.H., Haymore, B.L., & Christensen, J.J. (1971). Calorimetric study of the interaction in aqueous solution of several uni- and bivalent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10, 25, and 40 deg. J. Am. Chem. Soc., 93(7), 1619–1623. https://doi.org/10.1021/ja00736a008

Pat. 981318, USSR, 1982.

Hiraoka, M. (1982). Crown Compounds. Their Characteristics and Applications. T.: Kodansha Ltd., Am., N.Y.: Elsevier Scientific Pub. Co.

Yashkin, V.V., Zhukova, N.G., Tsarenko, N.A., & Laskorin, B.N. Doklady Akademii nauk USSR = Proceedings of the USSR Academy of Sciences, 273(6), 1398–1400 (in Russ).

Pat. 1244925, USSR, 1984.

Pat. 1027162, USSR, 1983.

Golovko, L.V., Rusinov, G.L., Morzhenin, Yu.Yu. (2012). Development of methods for producing dicyclohexyl-18-crown-6. Abstracts of the XXII Russian Youth Scientific Conference “Problems of Theoretical and Experimental Chemistry” dedicated to the 100th anniversary of the birth of A.A. Tager. Yekaterinburg: Pub. USU. P. 321–322 (in Russ).

Gao, J., Chen, S., Chen, J. (2012). Stereoselective reduction of dibenzo-18-crown-6 ether to dicyclohexano-18-crown-6 ether catalyzed by ruthenium catalysts. Cat. Comm., 28, 27–31. https://doi.org/10.1016/j.catcom.2012.08.019

Stoddart, J. F., & Wheatley, C. M. (1974). Stereospecific synthesis of the trans-anti-trans- and trans-syn-trans- isomers of dicyclohexyl-18-crown-6. J. Chem. Soc., Chem. Commun., 10, 390–391. https://doi.org/10.1039/C39740000390

Hayward, R. C., Overton, C. H., & Whitham, G. H. (1976). Chiral crown ethers derived from (+)-(1S, 2S)-trans-cyclohexane-1,2-diol. J. Chem. Soc., Perkin Trans. 1(22), 2413–2415. https://doi.org/10.1039/P19760002413

Huber, V. J., & Dietz, M. L. (2001). Improved conditions for the addition of alkoxides to di(ethylene glycol) di-p-tosylate: application to the stereospecific synthesis of the trans-isomers of dicyclohexano-18-crown-6. Tetrahedron Lett., 42(16), 2945–2948. https://doi.org/10.1016/S0040-4039(01)00331-8

Yamato, K., Bartsch, R.A., Dietz, M.L., & Rogers, R.D. (2002). Improved stereospecific synthesis of the trans-isomers of dicyclohexano-18-crown-6 and the solid-state structure of the trans–syn–trans-isomer. Tetrahedron Lett., 43(12), 2153–2156. https://doi.org/10.1016/S0040-4039(02)00221-6

Пат. 1065415 СССР, 1984.

Guseynova, T.M. (1984). Azerbaijanian khimicheskii zhurnal, 2, 39 (in Russ).

Izatt, R.M., Haymore, B.L., Bradshaw, J.S. (1975). Facile separation of the cis isomers of dicyclohexyl-18-crown-6. Inorg. Chem., 14(12), 3132–3133. https://doi.org/10.1021/ic50154a059

Jong, F., Reinhoudt, D.N., Zon, A., Torny, G.J., & Vondervoort, E.M. (1981). Chemistry of crown ethers (XVI)†. A safe and efficient procedure for the isolation and purification of crown ethers by complex formation with alkaline earth metal alkanedisulfonates. J. Royal. Nether. Chem. Soc., 100(12), 449–452. https://doi.org/10.1002/recl.19811001204

Feggle, F. (1985). Zhurnal Vserossi’skogo Khimicheskogo Obschestva im. D.I. Mendeleeva, 30, 500 (in Russ).

Опубликован
2021-12-17
Как цитировать
Глушко, В., Садовская, Н., Блохина, Л., Белусь, С., Ретивов, В., & Жила, М. (2021). Особенности очистки дициклогексил-18-краун-6 через получение кристаллических стехиометрических комплексов с HN-кислотными органическими молекулами. Химическая безопасность, 5(2), 49 - 65. https://doi.org/10.25514/CHS.2021.2.20002
Раздел
Технологии ликвидации источников химической опасности