Радиолитическое разложение хлорорганических пестицидов в почве

  • Н.А. Ибадов Институт Радиационных Проблем Национальная Академия Наук Азербайджана, Баку, Азербайджанская Республика https://orcid.org/0000-0002-4535-529X
  • М.А. Самадов Институт Радиационных Проблем Национальная Академия Наук Азербайджана, Баку, Азербайджанская Республика http://orcid.org/0000-0001-5024-2815
  • С.Ш. Маммадзаде Институт Радиационных Проблем Национальная Академия Наук Азербайджана, Баку, Азербайджанская Республика https://orcid.org/0000-0003-1402-687X
  • Ф.Ю. Гумбатов Институт Радиационных Проблем Национальная Академия Наук Азербайджана, Баку, Азербайджанская Республика https://orcid.org/0000-0002-4943-2977
  • М.А. Курбанов Институт Радиационных Проблем Национальная Академия Наук Азербайджана, Баку, Азербайджанская Республика https://orcid.org/0000-0003-3919-3930
Ключевые слова: γ-облучение, 60Co, ХОП, степень разложения, радиационно-химический выход, GC / ECD.

Аннотация

Изучена кинетика радиолитического разложения хлорорганических пестицидов (ХОП) в почве, в поглощенных дозах 10,8 кГр и 36,0 кГр при γ-облучении (60Со) и рассчитаны радиационно-химические выходы процессов радиолитического разложения. Выявлено, что степень разложения пестицидов при поглощенной дозе 36,0 кГр составляет более 70%. Радиационно-химические выходы составляют (2,10 ‒ 494) ∙ 10-8 молекул / 100 эВ для отдельных пестицидов.

Литература

Lepine, F. L. (1991). Effects of ionizing radiation on pesticides in a food irradiation perspective: A bibliographic review. J. Agric. Food Chem., 39, 2112‒2118. https://doi.org/10.1021/jf00012a002

Pikaev, A.K. (1985). Modern Radiation Chemistry. Basic provisions. Experimental techniques and methods. M.: Nauka (in Russ.).

Woods, R.J. & Pikaev, A.K. (1994). Applied Radiation Chemistry. Radiation Processing. New York: Wiley, P. 240. https://books.google.to/books?id=H8lXSP55D58C&printsec=frontcover&source=gbs_book_other_versions_r&cad=4#v=onepage&q&f=false

Lepine, F.L., Brochu, F., Milot, S., Mamer, O.A., & Pepin, Yvon (1994). Gamma-irradiation-induced degradation of DDT and its metabolites in organic solvents. J. Agric. Food Chem., 42, 2012‒2016. https://doi.org/10.1021/jf00045a034

Lepine, F.L., Brochu, F., Milot, S., et. al. (1995). Gamma irradiation-induced degradation of organochlorinated pollutants in fatty acid esters and in cod. J. Agric. Food Chem., 43, 491–494. https://doi.org/10.1021/jf00050a043

Trojanowicz, M. (2020). Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Science of The Total Environment, 718, 134425. https://doi.org/10.1016/j.scitotenv.2019.134425

Dunn, C.G. (1953). Treatment of water and sewage by ionizing radiations. Sew. Ind. Wastes 25, 1277–1281. https://www.jstor.org/stable/25032328

Touhill, C.J., Martin, E.C., Fujihara, M.P., Olesen, D.E., Stein, J.E., & Mcdonnel, G., (1969). Effects of radiation on Chicago metropolitan sanitary district municipal and industrial wastewaters. J. Wat. Poll. Contr. Fed. 41, 44–60. https://www.jstor.org/stable/25036258

Grant, D.L., Sherwood, C.R., & Mccully, K.A., (1969). Degradation and anticarboxylesterase activity of disulfoton and phorate after 60Co gamma irradiation. J. Assoc. Offic. Anal. Chem. 52, 805–811. https://doi.org/10.1093/jaoac/52.4.805

Sherman, W.V., Evans, R., Nesyto, E., & Radlowski, C., (1971). Dechlorination of DDT in solution by ionizing radiation. Nature 232, 118‒119. https://doi.org/10.1038/232118a0

Lippold, P.C., Cleere, J.S., Massey Jr., L.M., Bourke, J.B., & Avens, A.W., (1969). Degradation of insecticides by cobalt-60 gamma radiation. J. Econ. Entom. 62, 159–1510. https://doi.org/10.1093/jee/62.6.1509

Vollner, L. & Korte, F., (1974). Radiolyse von Chlor-pestiziden II. Gamma-bestrahlung in hexan, aceton und aceton/wasser. Chemosphere. Volume 3, Issue 6, December 1974, Pages 275‒280. https://doi.org/10.1016/0045-6535(74)90073-3

Carp, A.E., Liska, B.J., & Ziemer, P.L. (1972). Decomposition of Aldrin by Gamma Irradiation I. In Organic Solvent. Bull. Environ. Contam. Toxicol., 7(6), 321–330. https://doi.org/10.1007/BF01684455

Carp, A.E., Liska, B.J., & Ziemer, P.L. (1972). Decomposition of Aldrin by Gamma Irradiation II. In Lipid Solutions. Bull. Environ. Contam. Toxicol. 7(6), 331–337. https://doi.org/10.1007/BF01684456

Harris, C.R. & Sans, W.W. (1967). Absorption of oragnochlorine insecticides residues from agricultural soils by root crops. J. Agr. Food Chem., 15(5), 861–865. https://pubs.acs.org/doi/pdf/10.1021/jf60153a022

Nash, R.G. (1968). Plant absotiobtion of dieldrin, DDT and endrin from soils. J. Agronomy. 60(2), 217–221. https://doi.org/10.2134/agronj1968.00021962006000020022x

Ware, G.W. et.al. (1968). Pesticide in soil. An ecological study of DDT residues in Arizona soils in alfalfa. Pest. Monit. j. 2(3), 129–132.

EPA Method 8081B Organochlorine Pesticides By Gas Chromatography.

EPA Method 3550C Ultrasonic Extraction.

EPA Method 3660B Sulfur Cleanup.

EPA Method 3630 Silicagel cleanup.

Melnikova, T.V., Polyakova, L.P., & Oudalova, A.A. (2017). Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation. Journal of Physics: Conf. Series., 784(1), 012036. https://doi.org/10.1088/1742-6596/784/1/012036.

Polyakova, L.P., Melnikova, T.V., Oudalova, A.A., & Kozmin G.V., (2018). Study of the Effect of Radiation Dose Rate on the Stability of Various Organochlorine Pesticides. KnE Energy, 3(2), 401–408. https://doi.org/10.18502/ken.v3i2.1843.

Ibadov, N.A., Humbatov, F.Y., Samedov, M.A., Mammadzade, S.Sh. & Karimova, N.Sh. (2018). Determination of organochlorine pesticides and radionuclides in soil and sediment samples taken from the Kura-Aras river systems. Journal of Radiation Researches, Baku, 5(2), 307–315.

Voogt, P., Klamer J.C., & Govers H. (1986). Simultaneous clean up and fractionation of organo-chlorine compounds by adsorption chromatography. J. of Chromatography, 363,

- 411. https://doi.org/10.1016/S0021-9673(01)83765-1

EPA Method 9045D Soil And Waste pH.

EPA Method 9050A Specific Conductance.

Abd El-Moneim, M.R. Afify, Mohamed A. Abo-El-Seoud, Ghada, M. Ibrahim, Ismail, M.M. Helal & Bassam, & W. Kassem (2012). Exposing of Trichoderma spp. to gamma radiation for stimulating its pesticide biodegradation activity. J. Rad. Res. Appl. Sci., 5(2). 440–454. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/104/44104847.pdf

Manahan, S.E. (1994) The geosphere and geochemistry. Environmental Chemistry, 6th Ed. Boca Raton, Flor.: Lewis, P. 433–456.

Thomas, J.K. (1993) Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on SiO2, γ-Al2O3, zeolites and clays. Chem Rev 93, 301–320.

Takagi, K., Shichi, T. (2000) Photophysics and photochemistry in clay minerals. Mol Supramol Photochem, 5, 31–110.

Caine, M., Dyer, G., Holder, J.V, Osborne, B.N., Matear, W.A., McCabe, R.W., Mobbs, D., Richardson, S., & Wang L. (1999). The use of clays as sorbents and catalysts. Misaelides P, Macásěk, F, Pinnavaia, T.J., & Colella, C. (eds) Natural Microporous Materials in Environmental Technology. Kluwer, Dordrecht, pp. 49–69.

Sherman, D.M. (1989). Crystal chemistry, electronic structures, and spectra of Fe sites in clay minerals: application to photochemistry and electron transport. In: Coyne LM, Blake DF, McKeever SWS (eds) Spectroscopic Characterization of Minerals and Their Surfaces. ACS Symposium Series 415. American Chemical Society, Washington, D.C., pp. 284–309.

Stevenson, FJ (1976). Organic matter reactions involving pesticides in soil. In: Kaufman, D.D., Still, G.G., Paulson, G.D., Bandal SK (eds) Bound and Conjugated Pesticide Residues. ACS Symposium Series 29. American Chemical Society, Washington, DC, pp 180–207.

Ruggiero, P. (1999) Abiotic transformation of organic xenobiotics in soils: a compounding factor in the assessment of bioavailability. In: NATO Science Series 2. Environmental Security 64. Bioavailability of Organic Xenobiotics in the Environment. NATO, Washington, D.C, pp. 159–205.

Choudhry, G.G. (1984b). Humic substances. Structural aspects, and photophysical, photochemical and free radical characteristics. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, 1(C), Springer-Verlag, Berlin, pp. 1–24.

Senesi, N, Miano, T.M, Provenzano, M.R., & Brunetti G. (1989). Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Sci Total Environ 81/82,143–156.

Senesi, N & Testini, C. (1984). Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicides by charge-transfer mechanism. Chemosphere 13. 461–468.

Senesi, N. & Miano, T.M. (1995). The role of abiotic interactions with humic substances on the environmental impact of organic pollutants. In: Huang, PM, Berthelin, J, Bollag, JM, McGill WB (eds) Environmental Impacts of Soil Component Interactions: Natural and Anthropogenic Organics, 1. CRC Press, Boca Raton, FL, pp. 311–335.

Senesi, N. & Schnitzer M. (1977) Effects of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acid. Soil Sci 123, 224–234.

Choudhry, G.G. (1981). Humic substances. Part II: Photophysical, photochemical and free radical characterization. Toxicol Environ Chem 4:261–295.

Le Caër, S. (2011). Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 3, 235-253; https://doi.org/10.3390/w3010235

Buxton, G.V., Greenstock, C.L., Helman, W.P., & Ross, A.B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH*./ *O-) in aqueous solution. J. Phys. Ref. Chem. Data 17, 513–886. https://doi.org/10.1063/1.555805.

Poster D., Kantoglu O., Chaychian M., Neta P., Huie R., Silverman J., Al-Sheikhly M. (2004). Radiolytic degradation of chlorinated contaminants in marine sediment with food-grade surfactants. Remedation Methods And Controll Techniques. Organohalogen 66, 1250-1255. https://www.osti.gov/etdeweb/servlets/purl/20828007

Schmelling, D., Poster, D., Chaychian, M., Neta, P., McLaughlin, W., Silverman, J., & AlSheikhly, M. (1998). Applications of ionizing radiation to the remediation of materials contaminated with heavy metals and polychlorinated biphenyls. Radiat. Phys. Chem. 52,(1-6), 371–377. https://doi.org/10.1016/S0969-806X(98)00036-X

Chaychian, M., Al-Sheikhly, M., Silverman, J., & McLaughlin, W.L. (1998). The Mechanisms of Removal of Heavy Metal Ions from Water by Ionizing Radiation. Radiat. Phys. Chem. 53(2), 145‒150. https://doi.org/10.1016/S0969-806X(98)00001-2

Al-Sheikhly, M., Silverman, J., Neta, P., & Karam, L. (1997). Mechanisms of Ionizing Radiation-Induced Destruction of 2,6-Dichlorobiphenyl in Aqueous Solutions. Environ. Sci. Technol., 31(9), 2473–2477. https://doi.org/10.1021/es960741t

Schmelling D. C., Chaychian M., J. Silverman, Al-Sheikhly M., Poster D. L. & Neta P. (1998). Degradation of Polychlorinated Biphenyls Induced by Ionizing Radiation in Aqueous Micellar Systems. Environmental Science and Technology, 32, 270–275. https://doi.org/10.1021/es9704601

Jones, C.G., Silverman, J., Al-Sheikhly, M., Neta, P., & Poster, D.L. (2003). Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environmental Science & Technology 37(24), 5773–5777. https://doi.org/10.1021/es030412i

Jones, C.G. (2001) Ph.D. Thesis, Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD], 11 issue: 4, page(s): 569–577. https://doi.org/10.1177/0959354301114008

Chaychian, M., Jones, C.G., Poster, D.L., Silverman, J., Neta, P., Huie, R., & Al-Sheikhly, M. (2002). Radiolytic Dechlorination of PCBs in Transformer Oil and Marine Sediment. Radiat. Phys. Chem., 65(4-5), 473–478. https://doi.org/10.1016/S0969-806X(02)00359-6

Werner, R. Haag C.C., & David, Y. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 26, 1005–1013. https://pubs.acs.org/doi/pdf/10.1021/es00029a021

Mincher, B.J., Meikrantz, D.H., Murphy, R.J., Gresham, G.L., Connoly, M.J. (1991b). Gamma-ray induced degradation of PCBs and pesticides using spent reactor fuel. Appl. Radiat. Isot. 42, 1061–1066. https://doi.org/10.1016/0883-2889(91)90011-O

Mohamed, K.A., Basfar, A.A., Al-Kahtani, H.A., Al-Hamad, K.S. (2009). Radiolytic degradation of malathion and lindane in aqueous solution. Radiat. Phys. Chem. 78, 994–1000. https://doi.org/10.1016/j.radphyschem.2009.06.003

Опубликован
2021-06-15
Как цитировать
Ибадов, Н., Самадов, М., Маммадзаде, С., Гумбатов, Ф., & Курбанов, М. (2021). Радиолитическое разложение хлорорганических пестицидов в почве. Химическая безопасность, 5(1), 50 - 63. https://doi.org/10.25514/CHS.2021.1.19003
Раздел
Технологии ликвидации источников химической опасности