Биологическая активность краун-эфиров и их металлокомплексов

  • Н. Ю. Садовская Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия
  • В. Н. Глушко Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт» https://orcid.org/0000-0001-6641-8715
  • Л. И. Блохина Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия
  • В. М. Ретивов Федеральное государственное унитарное предприятие «Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра «Курчатовский институт», Москва, Россия; НИЦ «Курчатовский институт», Москва, Россия
Ключевые слова: краун-эфиры, макрогетероциклы, металлокомплексы, биологическая активность

Аннотация

В обзорной статье обобщена информация о научных исследованиях за последние 40 лет, в которых изучались различные виды биологической активности краун-эфиров и их комплексов с ионами металлов. Краун-эфиры широко применяются в различных областях науки и техники. На основе краун-эфиров создаются принципиально новые методы анализа и селективной экстракции различных неорганических ионов, разделения изотопов радиоактивных элементов, получения специальных мономеров, полимеров и мембран, созданных для охраны окружающей среды от губительного воздействия радиоактивных отходов. Велик поток работ по применению производных краун-эфиров для создания фото- и хемосенсоров, селективных к катионам металлов, для фотометрического и флуоресцентного анализа почв и воды. В то же время краун-эфиры все больше изучаются и используются в отличных от традиционных областях науки, например, активно ведутся исследования биологического и медицинского потенциала данных соединений и их комплексов с металлами. Являясь ионофорами, краун-эфиры способны проявлять антибактериальную, противогрибковую и противоопухолевую активность. Производные краун-эфиров исследуются в качестве активных действующих соединений для химиотерапии опухолей или носителей лекарственных средств против раковых клеток. Активно ведется поиск противоопухолевых соединений для химиотерапии как среди производных краун-эфиров, так и среди их комплексов с ионами металлов. Отмечено, что для многих производных краун-эфиров установлена антибактериальная активность, причем в большинстве случаев против грамположительных бактерий. Противогрибковая и противопаразитарная активность краун-эфиров изучена крайне мало, хотя в литературе присутствуют данные об успешном опыте исследования краун-подобных структур в качестве противогрибковых веществ. Сделано заключение, что наиболее актуальным направлением исследования краун-эфиров и их металлокомплексов является возможность их применения в качестве противоопухолевых средств.

Литература

Hiraoka, M. (1982). Crown compounds: their characteristics and applications. Amsterdam-Oxford-New York: Elsevier.

Pedersen, C.J. (1988).The discovery of crown ethers. Science, 241, 536 - 540. https://doi.org/10.1126/science.241.4865.536

Dmitrieva, S.N., Churakova, M.V., Vedernikov, A.I., Kuz’mina, L.G., & Gromov, S.P. (2011). New approach to the synthesis of dibenzodiazacrown ethers by ring transformation of dibenzocrown ether. Tetrahedron, 67(14), 2530 - 2535. https://doi.org/10.1016/j.tet.2011.02.038

Glushko, V.N., Blokhina, L.I., Sadovskaya, N.Yu., Pevtsova, L.A., & Belus, S.K. (2014). Special features of preparing benzoaza-12-crown-4 by condensation of o-aminophenol with triethylene glycol dichloride. Russian Journal of General chemistry, 84(11), 2079 - 2083. https://doi.org/10.1134/S107036321411005X

Glushko, V.N., Tsirulnikova, N.V., Blokhina, L.I., Pevtsova, L.A., Sadovskaya, N.Yu., Fetisova, T.S., & Podmareva, O.N. (2013). Production technology of macrocyclic polyether dibenzo-18-crown-6 – multipurpose effective reagent. Naukoemkie tekhnologii = Science Intensive Technologies, 14(3), 005 - 010 (in Russ.).

Sadovskaya, N.Yu., Glushko, V.N., Baryshnikova, M.A., Afanasyeva, D.A., Zhila, M.Yu., & Belus, S.K. (2019). Synthesis and investigation of copper complexes of some derivatives of azomethinic monobenzone-esters. Russian Journal of General Chemistry, 89(3), 440 - 445. https://doi.org/10.1134/S1070363219030125

Yildiz, M., Kiraz, A., & Dülger, B. (2007). Synthesis and antimicrobial activity of new crown ethers of Schiff base type. Journal of the Serbian Chemical Society, 72(3), 215 - 224. https://doi.org/10.2298/JSC0703215Y

Biron, E., Otis, F., Meillon, J.-C., Robitaille, M., Lamothe, J., Van Hove, P., Cormier, M.E., & Voyer, N. (2004). Design, synthesis, and characterization of peptide nanostructures having ion channel activity. Bioorg. Med. Chem., 12(6), 1279 - 1290. https://doi.org/10.1016/j.bmc.2003.08.037

Gumila, C., Ancelin, M.L., Delort, A.M., Jeminet, G., & Vial, H.J. (1997). Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob. Agents Chemother., 41(3), 523 - 529. https://doi.org/10.1128/AAC.41.3.523

Zubenko, A.D., Bakhareva, A.A., & Fedorova O.A. (2018). Development of components of radiopharmaceuticals based on pyridine-containing azacrown compounds. Uspekhi v khimii i khimicheskoi tekhnologii = Advances in Chemistry and Chemical Technology, 32(5), 35 - 37 (in Russ.).

Zubenko, A.D. (2019). Synthesis and complexing properties of benzo - and pyridineazacrown compounds and their derivatives (Ph.D. dissertation). Moscow: INEOS RAS (in Russ.).

Tso, W.W., Fung, W.-P., & Tso, M.Y. (1981). Variability of crown ether toxicity. Journal Inorg. Biochem., 14(3), 237 - 244. https://doi.org/10.1016/S0162-0134(00)80003-3

Tso, W.W., & Fung, W.-P. (1980). Intracellular potassium level: possible trigger for bacterial logarithmic growth. Inorg. Chim. Acta, 46, L33 - L34. https://doi.org/10.1016/S0020-1693(00)84130-4

Leevy, W.M., Weber, M.E., Gokel, M.R., Hughes-Strange, G.B., Daranciang, D.D., Ferdani, R., & Gokel, G.W. (2005). Correlation of bilayer membrane cation transport and biological activity in alkyl-substituted lariat ethers. Org. Biomol. Chem., 9(3), 1647 - 1652. https://doi.org/10.1039/B418194H

Ugras, H.I., Cakir, U., Azizoglu, A., Kilic, T., & Erk, C. (2006). Theoretical and biological activity study on the acyl-substituted benzo-18-crown-6, dibenzo-18-crown-6 and dibenzo-24-crown-8. Journal Inclusion Phenom. Macrocyclic Chem., 55, 159 - 165. http://dx.doi.org/10.1002/jhet.5570430639

Timmons, J.C., & Hubin, T.J. (2010). Preparations and applications of synthetic linked azamacrocycle ligands and complexes. Coordination Chemistry Reviews, 254, 1661 - 1685. https://doi.org/10.1016/j.ccr.2009.09.018

Steen, A., & Rosenkilde, M.M. (2012). Molecular pharmacology of CXCR4 inhibition. Novel Developments in Stem Cell Mobilization. Boston, MA: Springer. https://doi.org/10.1007/978-1-4614-1960-0_2

Hamal, S., Dhuys, T., Rowley, W.F., Vermeire, K., Aquaro, S., Frost, B.J., & Bell, T.W. (2015). Metal complexes of pyridine-fused macrocyclic polyamines targeting the chemokine receptor CXCR4. Organic & biomolecular chemistry, 13, 10517 - 10526. https://doi.org/10.1039/C5OB01557J

Franklin, S.J. (2001). Lanthanide-mediated DNA hydrolysis. Current Opinion in Chemical Biology, 5, 201 - 208. https://doi.org/10.1016/S1367-5931(00)00191-5

Laine, M., Lonnberg, T., Helkearo, M., & Lonnberg, H. (2016). Cleavage of short oligoribonucleotides by a Zn2+ binding multi-nucleating azacrown conjugate. Inorganica Chimica Acta, 452, 111 - 117. https://doi.org/10.1016/j.ica.2015.12.030

Khoramdareh, Z.K., Hosseini-Yazdi, S.A., Spingler, B., & Khandar, A.A. (2014). Copper(II) and zinc(II) complexes of mono-and tri-linked azacrown macrocycles: Synthesis, characterization, X-ray structure, phosphodiester hydrolysis and DNA cleavage. Inorganica Chimica Acta, 415, 7 - 13. https://doi.org/10.1016/j.ica.2014.02.022

Konup L.A., Konup I.P., Sklyar V.E., Kosenko K.N., Gorodnyuk V.P., Fedorova G.V., Nazarov E.I., Kotlyar S.A. (1989). Antimicrobial activity of aliphatic and aromatic crown ethers. Pharmaceutical Chemistry Journal, 23, 402 - 408. https://doi.org/10.1007/BF00758292

Brown, G.R., & Foubister, A.J. (1983). Anticoccidial activity of crown polyethers. Journal Med. Chem., 26(4), 590 - 592. https://doi.org/10.1021/jm00358a025

Yagi, K., Garcia, V., Rivas, M.E., Salas, J., Camargo, A., & Tabata, T. (1984). Antifungal activity of crown ethers. Journal Incl. Phenom. Macrocycl. Chem., 2, 179 - 184. https://doi.org/10.1007/BF00663254

Gül, D.S., Ogutcu, H., & Hayvali, Z. (2020). Investigation of photophysical behaviours and antimicrobial activity of novel benzo-15-crown-5 substituted coumarin and chromone derivatives. Journal of Molecular Structure, 1204, 127569. https://doi.org/10.1016/j.molstruc.2019.127569

Huang, S.T., Kuo, H.S., Hsiao, C.L., & Lin, Y.-L. (2002). Efficient synthesis of ‘redox-switched’ naphthoquinone thiol-crown ethers and their biological activity evaluation. Bioorg. Med. Chem., 10(6), 1947 - 1952. https://doi.org/10.1016/S0968-0896(02)00004-4

Sadeghian, A., Seyedi, S.M., Sadeghian, H., Hazrathoseyni, A., & Sadeghian, M. (2007). Synthesis, biological evaluation and QSAR studies of some new thioether–ester crown ethers. Journal Sulfur Chem., 28, 597 - 605. https://doi.org/10.1080/17415990701670718

Eshghi, H., Rahimizadeh, M., Zokaei, M., Eshghi, S., Eshghi, S., Faghihi, Z., Tabasi, E., & Kihanyan, M. (2011). Synthesis and antimicrobial activity of some new macrocyclic bis-sulfonamide and disulfides. Eur. J. Chem., 2(1), 47 - 50. https://doi.org/10.5155/eurjchem.2.1.47-50.260

Muzzalupo, R., Nicoletta, F.P., Trombino, S., Cassano, R., Iemma, F., & Picci, N. (2007). A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation. Coll. and Surf. B: Biointerfaces, 58(2), 197 - 202. https://doi.org/10.1016/j.colsurfb.2007.03.010

Jahan, M., Safari, N., & Khosravi, H. (2005). Crown ether-appended porphyrins and metalloporphyrins: Synthesis, characterization and metal ions interaction. Polyhedron, 24(13), 1682 - 1688. https://doi.org/10.1016/j.poly.2005.04.033

Liu, Y.-C., Kuo, M.-C., Lee, C.-W., Liang, Y.-R., Lee, G.-H., Peng, S.-M., & Yeh, C.-Y. (2008). Synthesis, structure, and cation complexation of a novel crown ether porphyrin. Tetrahedron Letters, 49(50), 7223 - 7226. https://doi.org/10.1016/j.tetlet.2008.10.014

Li, X.D., Zhu, Y.C., & Yang, L.J. (2012). Crown ether-appended Fe(III) porphyrin: Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. Chinese Chem. Lett., 23(3), 375 - 378. https://doi.org/10.1016/j.cclet.2011.12.011

Supek, F., Ramljak, T.S., & Marjanovi, M. (2011). Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns. Eur. J. of Med. Chem., 46(8), 3444 - 3454. https://doi.org/10.1016/j.ejmech.2011.05.009

Karawajew, L., Glibin, E.N., Maleev, V.Ya., Czerwony, G., Dorken, B., Davies, D.B., & Veselkov, A.N. (2000). Role of crown-like side chains in the biological activity of substituted-phenoxazone drugs. Anticancer Drug Des., 15(5), 331 - 338.

Jansen, B.A., Wielaard, P., Dulk, H., Brouwer, J., & Reedijk, J. (2002). Oxa‐aza crown ethers as ligands for mixed‐ligand cisplatin derivatives and dinuclear platinum anticancer drugs. Eur. J. Inorg. Chem., 9, 2375 - 2379. https://doi.org/10.1002/1099-0682(200209)2002:9<2375::AID-EJIC2375>3.0.CO;2-B

Marjanovic, M., Kralj, M., Supek, F., Frkanec, L., Piantanida, I., Smuc, T., & Tusek-Bozic, L. (2007). Antitumor potential of crown ethers: structure−activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores. Journal Med. Chem., 50(5), 1007 - 1018. https://doi.org/10.1021/jm061162u

Mirkhodjaev, U.Z., Boldyrev, V.A., Yarishkin, O.V., & Tashmukhamedov, B.A. (2005). Antitumor potential of crown ethers: structure-activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores. Journal Inclusion Phenom. Macrocyclic Chem., 53, 191 - 196. https://doi.org/10.1007/s10847-005-2021-z

Adamovich, S.N., Mirskova, A.N., Mirskov, R.G., Perminova, O.M., Chipanina, N.N., Aksamentova, T.N., & Voronkov, M.G. (2010). New quaternary ammonium salts and metal complexes of organylheteroacetic acids with diaza-18-crown-6 ether. Russ. J. Gen. Chem., 80, 1007 - 1010. https://doi.org/10.1134/S1070363210050269

Patent 8389505, USA, 2011.

Vogel, S., Rohr, K., Dahl, O., & Wengel, J. (2003). A substituted triaza crown ether as a binding site in DNA conjugates. Chem. Commun., 1006 - 1007. https://doi.org/10.1039/B301100C

Fukuda, R., Takenaka, S., & Takagi, M. (1990). Metal ion assisted DNA-intercalation of crown ether-linked acridine derivatives. Journal Chem. Soc. Chem. Commun., 1028 - 1030. https://doi.org/10.1039/C39900001028

Huszthy, P., Kontos, Z., Vermes, B., & Pinter A. (2001). Synthesis of novel fluorescent acridono- and thioacridono-18-crown-6 ligands. Tetrahedron, 57(23), 4967 - 4975. https://doi.org/10.1016/S0040-4020(01)00408-2

Brandt, K., Kruszynksi, R., Bartczak, T.J., & Porwolik-Czomperlik, I. (2001). AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorg. Chim. Acta, 322(1-2), 138 - 144. https://doi.org/10.1016/S0020-1693(01)00557-6

McPhee, M.M., Kern, J.T., Hoster, B.C., & Kerwin, S.M. (2000). Propargylic sulfone-armed lariat crown ethers: alkali metal ion-regulated DNA cleavage agents. Bioorg. Chem., 28(2), 98 - 118. https://doi.org/10.1006/bioo.1999.1167

McPhee, M.M., & Kerwin, S.M. (2001). Synthesis, DNA cleavage, and cytotoxicity of a series of bis(propargylic) sulfone crown ethers. Bioorg. Med. Chem., 9(11), 2809 - 2818. https://doi.org/10.1016/S0968-0896(01)00150-X

Febles, M., Montalvão, S., Crespín, G.D., Norte, M., Padrón, J.M., Tammela, P., Fernández, J.J., & Daranas, A.H. (2016). Synthesis and biological evaluation of crown ether acyl derivatives. Bioorganic & Medicinal Chemistry Letters, 26(22), 5591 - 5593. https://doi.org/10.1016/j.bmcl.2016.09.066

Majouga, A.G., Zvereva, M.I., Rubtsova, M.P., Skvortsov, D.A., Mironov, A.V., Azhibek, D.M., Krasnovskaya, O.O., Gerasimov, V.M., Udina, A.V., Vorozhtsov, N.I., Beloglazkina, E.K., Agron, L., Mikhina, L.V., Tretyakova, A.V., Zyk, N.V., Zefirov, N.S., Kabanov, A.V., & Dontsova, O.A. (2014). Mixed valence copper(I,II) binuclear complexes with unexpected structure: synthesis, biological properties and anticancer activity. Journal Med. Chem., 57(14), 6252 - 6258. https://doi.org/10.1021/jm500154f

Iakovidis, I., Delimaris, I., & Piperakis, S.M. (2011). Copper and its complexes in medicine: a biochemical approach. Mol. Bio. Int., 594529. https://doi.org/10.4061/2011/594529

Marzano, C., Pellei, M., Tisato, F., & Santini, C. (2009). Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 9(2), 185 - 211. https://doi.org/10.2174/187152009787313837

Gund, A., & Keppler, B.K. (1993). Synthesis and characterization of new anti-tumor platinum bipyridyl crown ether complexes. Journal of Inorganic Biochemistry, 51(1-2), 437. https://doi.org/10.1016/0162-0134(93)85466-L

Gokel, G.W., Negin, S., & Cantwell, R. (2017).Crown Ethers., St. Louis, MO, United States: Elsevier.

Yoo, J., Sohn, Y.S., & Do, Y. (1999). Synthesis, structures and antitumor activity of the first crown ester-linked bipyridyl platinum complexes. Journal Inorg. Biochem., 73(3), 187 - 193. https://doi.org/10.1016/S0162-0134(99)00016-1

Frühauf, S., & Zeller, W.J. (1991). New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells. Cancer Res., 51(11), 2943 - 2948.

Опубликован
2020-12-26
Как цитировать
Садовская, Н. Ю., Глушко, В. Н., Блохина, Л. И., & Ретивов, В. М. (2020). Биологическая активность краун-эфиров и их металлокомплексов. Химическая безопасность, 4(2), 80 - 100. https://doi.org/10.25514/CHS.2020.2.18006
Раздел
Материалы с новыми функциональными свойствами