Определение остаточных количеств пестицидов в объектах окружающей среды и пищевых продуктах. Обзор

  • О. И. Лаврухина ФГБУ «Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов»; Владимирский государственный университет имени А.Г. и Н.Г. Столетовых, Владимир, Россия https://orcid.org/0000-0001-6248-5726
  • В. Г. Амелин Всероссийский государственный центр качества и стандартизации лекарственных средств для животных и кормов, Москва, Россия; Владимирский государственный университет имени А.Г. и Н.Г. Столетовых https://orcid.org/0000-0001-7477-7398
  • Л. К. Киш Всероссийский государственный центр качества и стандартизации лекарственных средств для животных и кормов, Москва, Россия https://orcid.org/0000-0002-3814-7134
  • А. В. Третьяков Всероссийский государственный центр качества и стандартизации лекарственных средств для животных и кормов, Москва, Россия https://orcid.org/0000-0002-4984-9502
  • Д. К. Лаврухин Владимирский государственный университет имени А.Г. и Н.Г. Столетовых, Владимир, Россия https://orcid.org/0000-0003-4358-6681
Ключевые слова: пестициды, объекты окружающей среды, пищевые продукты, методы извлечения и определения

Аннотация

Представлен анализ литературы 2017 – 2022 гг. об основных особенностях методик, разрабатываемых для определения пестицидов в объектах окружающей среды и продуктах питания как растительного, так и животного происхождения. В пробоподготовке наиболее востребованными являются современные подходы, сочетающие одновременно извлечение, концентрирование и очистку образцов, а именно дисперсионная твердофазная экстракция и дисперсионная жидкостно-жидкостная микроэкстракция. Продемонстрированы преимущества высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрией и универсальными способами пробоподготовки для проведения экологического мониторинга и мониторинга безопасности пищевой продукции. Показана возможность одновременного определения пестицидов различных классов и продуктов их трансформации с использованием ВЭЖХ в сочетании с масс-спектрометрией высокого разрешения и предварительной подготовкой образцов методом QuEChERS. В связи с возможностью более точного определения масс, метод успешно применяется в анализе исходных соединений, их метаболитов и наиболее перспективен для многокомпонентного анализа.

Литература

Narenderan, S., Meyyanathan, S.N., & Babu, B. (2020). Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int., 133, 109141. https://doi.org/10.1016/j.foodres.2020.109141

Rathi, B.S., Kumar, P.S., & Vo, D.N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ., 797, 149134. https://doi.org/10.1016/j.scitotenv.2021.149134

de O Gomes, H., Menezes, J.M., da Costa, J.G., Coutinho, H.D., Teixeira, R.N., & do Nascimento, R.F. (2020). A socio-environmental perspective on pesticide use and food production. Ecotoxicol. Environ. Saf., 197, 110627. https://doi.org/10.1016/j.ecoenv.2020.110627

Shabbir, M., Singh, M., Maiti, S., & Saha, S. K. (2021). Organophosphate pesticide (Chlorpyrifos): Environmental menace; study reveals genotoxicity on plant and animal cells. Environmental Challenges, 5, 100313. https://doi.org/10.1016/j.envc.2021.100313

National Catalog of Pesticides and Agrochemicals dated April 26, 2022 https://mcx.gov.ru/ministry/departments/departament-rastenievodstva-mekhanizatsii-khimizatsii-i-zashchity-rasteniy/industry-information/info-gosudarstvennaya-usluga-po-gosudarstvennoy-registratsii-pestitsidov-i-agrokhimikatov/?ysclid=l3b5osgyil (accessed 17.05.2022).

Tuzimski, T. (2019). Herbicides and Pesticides. In book Encyclopedia of Analytical Science (Third Edition). Academic Press. P. 391–398. https://doi.org/10.1016/B978-0-12-409547-2.14395-1

Ochoa V., Maestroni B. (2018). Chapter 9 - Pesticides in Water, Soil, and Sediments. In book Integrated Analytical Approaches for Pesticide Management. Academic Press. P. 133–147. https://doi.org/10.1016/B978-0-12-816155-5.00009-9

Carazo-Rojas, E., Pérez-Rojas, G., Pérez-Villanueva, M.E., Chinchilla-Soto, C., Chin-Pampillo, J., Aguilar-Mora, P., Alpízar-Marín, M., Masís-Mora, M., Rodríguez-Rodríguez, C.E., & Vryzas, Z. (2018). Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ. Pollut., 241, 800–809. https://doi.org/10.1016/j.envpol.2018.06.020

Nørskov, N.P., Jensen, S.K., & Sorensen, M.T. (2019). Robust and highly sensitive micro liquid chromatography-tandem mass spectrometry method for analyses of polar pesticides (glyphosate, aminomethylphosfonic acid, N-acetyl glyphosate and N-acetyl aminomethylphosfonic acid) in multiple biological matrices. J. Chromatogr. A, 360343. https://doi.org/10.1016/j.chroma.2019.06.064

Tsygankov, V.Y. (2019). Organochlorine pesticides in marine ecosystems of the Far Eastern Seas of Russia (2000-2017). Water Res., 161, 43–53. https://doi.org/10.1016/j.watres.2019.05.103

Samsidar, A., Siddiquee, S., & Shaarani, S.M. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol., 71, 188–201. https://doi.org/10.1016/j.tifs.2017.11.011

Rahman, M., Hoque, M.S., Bhowmik, S., Ferdousi, S., Kabiraz, M.P., & van Brakel, M.L. (2021). Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon, 7(3), e06390. https://doi.org/10.1016/j.heliyon.2021.e06390

Watanabe, E. (2021). Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods. J. Chromatogr. A, 1643, 462042. https://doi.org/10.1016/j.chroma.2021.462042

Wang, J., Xu, J., Ji, X., Wu, H., Yang, H., Zhang, H., Zhang, X., Li, Z., Ni, X., & Qian, M. (2019). Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 460808. https://doi.org/10.1016/j.chroma.2019.460808

Huérfano Barco, I.M., España Amórtegui, J.C., & Guerrero Dallos, J.A. (2021). Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem., 367, 130714. https://doi.org/10.1016/j.foodchem.2021.130714

Zhang, X., Song, Y., Jia, Q., Zhang, L., Zhang, W., Mu, P., Jia, Y., Qian, Y., & Qiu, J. (2019). Simultaneous determination of 58 pesticides and relevant metabolites in eggs with a multi-functional filter by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1593, 81–90. https://doi.org/10.1016/j.chroma.2019.01.074

Ibáñez, M. (2017). Chapter 13 - Multiresidue methods for pesticides and related contaminants in food. In book Liquid Chromatography (Second Edition), Elsevier. P. 381–400. https://doi.org/10.1016/B978-0-12-805392-8.00013-X

Kaur, N., Khunger, A., Wallen, S.L., Kaushik, A.K., Chaudhary, G.R., & Varma, R.S. (2021). Advanced green analytical chemistry for environmental pesticide detection. Curr. Opin. Green Sustain. Chem., 30, 100488. https://doi.org/10.1016/j.cogsc.2021.100488

Issa, M.M., M Taha, S., El-Marsafy, A.M., Khalil, M.M., & Ismail, E.H. (2020). Acetonitrile-Ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS. J. Chromatogr. B, 1145, 122106. https://doi.org/10.1016/j.jchromb.2020.122106

Zhao, L., Szakas, T., Churley, M., & Lucas, D. (2019). Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup. J. Chromatogr. A, 1584, 1–12. https://doi.org/10.1016/j.chroma.2018.11.022

Pang, G., Chang, Q., Bai, R., Fan, C., Zhang, Z., Yan, H., & Wu, X. (2020). Simultaneous Screening of 733 Pesticide Residues in Fruits and Vegetables by a GC/LC-Q-TOFMS Combination Technique. Engineering, 6, 432–441. https://doi.org/10.1016/j.eng.2019.08.008

Rahman, M.M., Abd El-Aty, A.M., Kim, S., Lee, Y., Na, T.W., Park, J., Shin, H., & Shim, J. (2017). Simultaneous determination and identity confirmation of thiodicarb and its degradation product methomyl in animal-derived foodstuffs using high-performance liquid chromatography with fluorescence detection and tandem mass spectrometry. J. Chromatogr. B, 1040, 97–104. https://doi.org/10.1016/j.jchromb.2016.12.013

Saito-Shida, S., Kashiwabara, N., Nemoto, S., & Akiyama, H. (2022). Development of an LC–MS/MS-based method for determination of acetochlor and its metabolites in crops. J. Food Compost. Anal., 108, 104454. https://doi.org/10.1016/j.jfca.2022.104454

Zhao, J., Pu, J., Wu, X., Chen, B., He, Y., Zhang, Y., & Han, B. (2021). Evaluation of the matrix effect of pH value and sugar content on the analysis of pesticides in tropical fruits by UPLC-MS/MS. Microchem. J., 168, 106375. https://doi.org/10.1016/j.microc.2021.106375

Pena-Pereira, F., Bendicho, C., Pavlović, D.M., Martín‐Esteban, A., Díaz-Álvarez, M., Pan, Y., Cooper, J., Yang, Z., Safarik, I., Pospiskova, K., Segundo, M.A., & Psillakis, E. (2021). Miniaturized analytical methods for determination of environmental contaminants of emerging concern – A review. Anal. Chim. Acta, 1158, 238108. https://doi.org/10.1016/j.aca.2020.11.040

Dmitrienko, S.G., Apyari, V.V., Tolmacheva, V.V., & Gorbunova, M.V. (2021). Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. J. Anal. Chem., 76(8), 907–919. https://doi.org/10.1134/S1061934821080049

Musarurwa, H., Chimuka, L., Pakade, V.E., & Tavengwa, N.T. (2019). Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J. Food Compost. Anal., 84, 103314. https://doi.org/10.1016/j.jfca.2019.103314

Amelin, V.G., Bolshakov, D.S., Avdeyeva, N.M., Podkolzin, I.V., & Nikeshina, T.B. (2017). Identification and determination of contaminants of different classes in food products and feed by high resolution mass spectrometry with standard addition method. Trudy federal'nogo tsentra okhrany zdorov'ya zhivotnykh = Proceedings of the federal center for animal health, 15, 171–210. (in Russ.)

Andraščíková, M., Hrouzková, S., & Cunha, S.C. (2013). Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples. Food Addit. Contam.: Part A, 30(2), 286–297. https://doi.org/10.1080/19440049.2012.736029

Amelin, V.G., Bol’shakov, D.S. & Andoralov, A.M. (2017). Determination of neonicotinoid insecticides in natural waters by high-resolution time-of-flight mass spectrometry with direct electrospray ionization of samples. J Anal. Chem., 72, 178–182. https://doi.org/10.1134/S1061934816120030

Amórtegui, J.C.E., & Dallos, J.A.G. (2018). Chapter 8 - Overview of Analytical Methodologies and Techniques for Pesticide Residue Analysis. In book Integrated Analytical Approaches for Pesticide Management. Academic Press. P. 123–132. https://doi.org/10.1016/B978-0-12-816155-5.00008-7

Siraj, J., Mekonen, S., Astatkie, H., & Gure, A. (2021). Organochlorine pesticide residues in tea and their potential risks to consumers in Ethiopia. Heliyon, 7(7), e07667. https://doi.org/10.1016/j.heliyon.2021.e07667

Sander, L.C., Schantz, M.M., & Wise, S.A. (2017). Chapter 14 - Environmental analysis: Persistent organic pollutants. In book Liquid Chromatography (Second Edition). Elsevier. 2017. P. 401–449. https://doi.org/10.1016/B978-0-12-805392-8.00014-1

Do Lago, C.L., Daniel, D., Lopes, F.S., & Cieslarová, Z. (2020). 10 – Electrophoresis. In book Chemical Analysis of Food (Second Edition). Academic Press. P. 499–523. https://doi.org/10.1016/B978-0-12-813266-1.00010-3.

Sapahin, H.A., Makahleh, A., & Saad, B. (2019). Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arab. J. Chem., 12(8), 1934–1944. https://doi.org/10.1016/j.arabjc.2014.12.001

Zhou, L., Yang, J., Tao, Z., Eremin, S.A., Hua, X., & Wang, M. (2020). Development of Fluorescence Polarization Immunoassay for Imidacloprid in Environmental and Agricultural Samples. Front. Chem., 8, 615594. https://doi.org/10.3389/fchem.2020.615594

Petrarca, M.H., Ccanccapa-Cartagena, A., Masiá, A., Godoy, H.T., & Picó, Y. (2017). Comparison of green sample preparation techniques in the analysis of pyrethrins and pyrethroids in baby food by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1497, 28–37. https://doi.org/10.1016/j.chroma.2017.03.065

Viera, M.S., Rizzetti, T.M., de Souza, M.P., Martins, M.L., Prestes, O.D., Adaime, M.B., & Zanella, R. (2017). Multiresidue determination of pesticides in crop plants by the quick, easy, cheap, effective, rugged, and safe method and ultra-high-performance liquid chromatography tandem mass spectrometry using a calibration based on a single level standard addition in the sample. J. Chromatogr. A, 1526, 119–127. https://doi.org/10.1016/j.chroma.2017.10.048

Zaidon, S.Z., Ho, Y.B., Hamsan, H., Hashim, Z., Saari, N., & Praveena, S.M. (2019). Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchem. J., 145, 614–621. https://doi.org/10.1016/j.microc.2018.11.025

Sapozhnikova, Ye. (2018). High-throughput analytical method for 265 pesticides and environmental contaminants in meats and poultry by fast low pressure gas chromatography and ultrahigh-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 1572, 203–211. https://doi.org/10.1016/j.chroma.2018.08.025

Jia, Q., Qiu, J., Zhang, L., Liao, G., Jia, Y., & Qian, Y. (2022). Multiclass Comparative Analysis of Veterinary Drugs, Mycotoxins, and Pesticides in Bovine Milk by Ultrahigh-Performance Liquid Chromatography–Hybrid Quadrupole–Linear Ion Trap Mass Spectrometry. Foods, 11(3), 331. https://doi.org/10.3390/foods11030331

Hintze, S., Hannalla, Y.S.B., Guinchard, S., Hunkeler, D., & Glauser, G. (2021). Determination of chlorothalonil metabolites in soil and water samples. J. Chromatogr. A, 1655, 462507. https://doi.org/10.1016/j.chroma.2021.462507

Na, T.-W., Md. Musfiqur Rahman, Kim, S.-W., Haque, M.E., Eun, J.-B., & Shim, J.-H. (2020). Upgrading analytical methodology through comparative study for screening of 267 pesticides/metabolites in five representative matrices using UPLC-MS/MS. J. Chromatogr. B, 1141, 122021. https://doi.org/10.1016/j.jchromb.2020.122021

Danek, M., Fang, X., Tang, J., Plonka, J., & Barchanska, H. (2021). Simultaneous determination of pesticides and their degradation products in potatoes by MSPD-LC-MS/MS. J. Food Compost. Anal., 104, 104129. https://doi.org/10.1016/j.jfca.2021.104129

Hamadamin, A.Y., & Hassan, K.I. (2020). Gas chromatography–mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Saudi J. Biol. Sci., 27(3), 887–893. https://doi.org/10.1016/j.sjbs.2019.12.029

Kaczyński, P., Łozowicka, B., Perkowski, M., & Szabuńko, J. (2017). Multiclass pesticide residue analysis in fish muscle and liver on one-step extraction-cleanup strategy coupled with liquid chromatography tandem mass spectrometry. Ecotoxicol. Environ. Saf., 138, 179–189. https://doi.org/10.1016/j.ecoenv.2016.12.040

Konatu, F.R.B., Breitkreitz, M.C., & Jardim, I.C.S.F. (2017). Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1482, 11–22. https://doi.org/10.1016/j.chroma.2016.12.061

Machado, I., Gérez, N., Pistón, M., Heinzen, H., & Cesio, M.V. (2017). Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem., 227, 227–236. https://doi.org/10.1016/j.foodchem.2017.01.025

Amelin, V. G, Bol'shakov, D.S., & Andoralov, A.M. (2018). Screening and Determination of Pesticides from Various Classes in Natural Water without Sample Preparation by Ultra HPLC–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry. J Anal. Chem., 73(3), 257–265. https://doi.org/10.1134/S1061934818030024

Biparva, P., Gorji, S., & Hedayati, E. (2020). Promoted reaction microextraction for determining pesticide residues in environmental water samples using gas chromatography-mass spectrometry. J. Chromatogr. A, 1612, 460639. https://doi.org/10.1016/j.chroma.2019.460639

da Costa Morais, E.H., Collins, C.H., & Jardim, I.C.S.F. (2018). Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS. Food Chem., 249, 77–83. https://doi.org/10.1016/j.foodchem.2017.12.092

Kim, Y.-A., Abd El-Aty, A.M., Md. Musfiqur Rahman, Jeong, J.H., Shin, H.-C., Wang, J., Shin, S.S., & Shim, J.-H. (2018). Method development, matrix effect, and risk assessment of 49 multiclass pesticides in kiwifruit using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B, 1076, 130–138. https://doi.org/10.1016/j.jchromb.2018.01.015

Gaweł, M., Kiljanek, T., Niewiadowska, A., Semeniuk, S., Goliszek, M., Burek, O., & Posyniak, A. (2019). Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem., 282, 36–47. https://doi.org/10.1016/j.foodchem.2019.01.003

Wang, F., Li, S., Feng, H., Yang, Y., Xiao, B., & Chen, D. (2019). An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem., 275, 530–538. https://doi.org/10.1016/j.foodchem.2018.09.142

Zhou, H., Cao, Y.-M., Miao, S., Lan, L., Chen, M., Li, W.-T., Mao, X.-H., & Ji, S. (2019). Qualitative screening and quantitative determination of 569 pesticide residues in honeysuckle using ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high resolution mass spectrometry. J. Chromatogr. A, 1606, 460374. https://doi.org/10.1016/j.chroma.2019.460374

Manav, Ö.G., Dinç-Zor, Ş., & Alpdoğan, G. (2019). Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J., 144, 124–129. https://doi.org/10.1016/j.microc.2018.08.056

Weng, R., Lou, S., Pang, X., Song, Y., Su, X., Xiao, Z., & Qiu, J. (2020). Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem., 309, 125503. https://doi.org/10.1016/j.foodchem.2019.125503

Acosta-Dacal, A., Rial-Berriel, C., Díaz-Díaz, R., del Mar Bernal-Suárez, M., & Luzardo, O.P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ., 753, 142015. https://doi.org/10.1016/j.scitotenv.2020.142015

Theurillat, X., Dubois, M., & Huertas-Pérez, J.F. (2021). A multi-residue pesticide determination in fatty food commodities by modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Food Chem., 353, 129039. https://doi.org/10.1016/j.foodchem.2021.129039

Shin, D., Kim, J., & Kang, H.-S. (2021). Simultaneous determination of multi-pesticide residues in fish and shrimp using dispersive-solid phase extraction with liquid chromatography–tandem mass spectrometry. Food Control, 120, 107552. https://doi.org/10.1016/j.foodcont.2020.107552

Pang, X., Liu ,X., Peng, L., Chen, Z., Qiu, J., Su, X., Yu, C., Zhang, J., & Weng, R. (2021). Wide-scope multi-residue analysis of pesticides in beef by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Chem., 351, 129345. https://doi.org/10.1016/j.foodchem.2021.129345

Tóth, E., Tölgyesi, Á., Simon, A., Bálint, M., Ma, X., & Sharma, V.K. (2022). An Alternative Strategy for Screening and Confirmation of 330 Pesticides in Ground- and Surface Water Using Liquid Chromatography Tandem Mass Spectrometry. Molecules, 27, 1872. https://doi.org/10.3390/molecules27061872

García-Vara, M., Postigo, C., Palma, P., Bleda, M.J., & de Alda, M.L. (2022). QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chem., 386, 132558. https://doi.org/10.1016/j.foodchem.2022.132558

Valverde, M.G., Bueno, M.J.M., del Mar Gómez-Ramos, M., Díaz-Galiano, F.J., & Fernández-Alba, A.R. (2021). Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils. MethodsX, 8, 101290. https://doi.org/10.1016/j.mex.2021.101290

EN 15662:2018. Foods of Plant Origin – Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE – Modular QuEChERS-Method. https://standards.iteh.ai/catalog/standards/cen/167a30bc-edf9-4cf8-b96b-cabd932f2f02/en-15662-2018 (дата обращения 06.05.2022).

Casado, J., Santillo, D., & Johnston, P. (2018). Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry // Anal. Chim. Acta, 1024, 1–17. https://doi.org/10.1016/j.aca.2018.04.026

Kaufmann, A. (2020). The use of UHPLC, IMS, and HRMS in multiresidue analytical methods: A critical review. J. Chromatogr. B, 1158, 122369. https://doi.org/10.1016/j.jchromb.2020.122369

Amelin, V.G., Saun’kina, M.A., & Andoralov, A.M. (2018). Direct analysis of natural waters in real time by electrospray ionization/quadrupole time-of-flight high-resolution mass spectrometry. Determination of pesticides different classes. Moscow University Chemistry Bulletin, 59(1), 35–42. (in Russ).

Pang, G.-F. (2018). Chapter 3 - Analytical Methods for 790 Pesticides and Related Chemical Residues in Products of Animal Origin, Chapter 4 - Determination of 450 Pesticides and Related Chemical Residues in Drinking Water: LC-MS-MS Method (GB/T 23214-2008). In book Analytical Methods for Food Safety by Mass Spectrometry. Academic Press. P. 151–257, 259–272. https://doi.org/10.1016/B978-0-12-814167-0.00003-X, https://doi.org/10.1016/B978-0-12-814167-0.00004-1

Wang, X., Jia, R., Song, Y., Wang, M., Zhao, Q., & Sun, S. (2019). Determination of pesticides and their degradation products in water samples by solid-phase extraction coupled with liquid chromatography-mass spectrometry. Microchem. J., 149, 104013. https://doi.org/10.1016/j.microc.2019.104013

Pasupuleti, R.R., Tsai, P.-C., & Ponnusamy, V.K. (2019). A fast and sensitive analytical procedure for monitoring of synthetic pyrethroid pesticides' metabolites in environmental water samples. Microchem. J., 148, 355–363. https://doi.org/10.1016/j.microc.2019.05.030

Kiljanek, T., Niewiadowska, A., Małysiak, M., & Posyniak A. (2021). Miniaturized multiresidue method for determination of 267 pesticides, their metabolites and polychlorinated biphenyls in low mass beebread samples by liquid and gas chromatography coupled with tandem mass spectrometry. Talanta, 235, 122721. https://doi.org/10.1016/j.talanta.2021.122721

Zhao, Y., Bai, X.-L., Liu, Y.-M., & Liao, X. (2021). Determination of fipronil and its metabolites in egg samples by UHPLC coupled with Q-Exactive high resolution mass spectrometry after magnetic solid-phase extraction. Microchem. J., 169, 106540. https://doi.org/10.1016/j.microc.2021.106540

Huang, H., Li, Z., He, Y., Huang, L., Xu, X., Pan, C., Guo, F., Yang, H., & Tang, S. (2021). Nontarget and high-throughput screening of pesticides and metabolites residues in tea using ultra-high-performance liquid chromatography and quadrupole-orbitrap high-resolution mass spectrometry. J. Chromatogr. B, 1179, 122847. https://doi.org/10.1016/j.jchromb.2021.122847

Rajski, Ł., Petromelidou, S., Díaz-Galiano, F.J., Ferrer, C., & Fernández-Alba, A.R. (2021). Improving the simultaneous target and non-target analysis LC-amenable pesticide residues using high speed Orbitrap mass spectrometry with combined multiple acquisition modes. Talanta, 228, 122241. https://doi.org/10.1016/j.talanta.2021.122241

Steiner, D., Sulyok, M., Malachová, A., Mueller, A., & Krska, R. (2020). Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A, 1629, 461502. https://doi.org/10.1016/j.chroma.2020.461502

Reichert, B., de Kok, A., Pizzutti, I.R., Scholten, J., Cardoso, C.D., & Spanjer, M. (2018). Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Anal. Chim. Acta, 1004, 40–50. https://doi.org/10.1016/j.aca.2017.11.077

Kresse, M., Drinda, H., Romanotto, A., & Speer, K. (2019). Simultaneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. J. Chromatogr. B, 1117, 86–102. https://doi.org/10.1016/j.jchromb.2019.04.013

Xu, X., Xu, X., Han, M., Qiu, S., & Hou, X. (2019). Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem, 276, 419–426. https://doi.org/10.1016/j.foodchem.2018.10.051

Jadhav, M.R., Pudale, A., Raut, P., Utture, S., Shabeer ,T.P.A., & Banerjee, K. (2019). A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chem, 272, 292–305. https://doi.org/10.1016/j.foodchem.2018.08.033

Zhan, J., Shi, X.-Z., Xu, X.-W., Cao, G.-Z., & Chen, X.-F. (2020). Generic and rapid determination of low molecular weight organic chemical contaminants in protein powder by using ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. В, 1138, 121967. https://doi.org/10.1016/j.jchromb.2020.121967

Castilla-Fernández, D., Moreno-González, D., Bouza, M., Saez-Gómez, A., Ballesteros, E., García-Reyes, J.F., & Molina-Díaz, A. (2021). Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control, 130, 108311. https://doi.org/10.1016/j.foodcont.2021.108311

Izzo, L., Narváez, A., Castaldo, L., Gaspari, A., Rodríguez-Carrasco, Y., Grosso, M., & Ritieni, A. (2022). Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. J. Dairy Sci., 105(4), 2948–2962. https://doi.org/10.3168/jds.2021-21123

Опубликован
2022-12-11
Как цитировать
Лаврухина, О. И., Амелин, В. Г., Киш, Л. К., Третьяков, А. В., & Лаврухин, Д. К. (2022). Определение остаточных количеств пестицидов в объектах окружающей среды и пищевых продуктах. Обзор. Химическая безопасность, 6(2), 81 - 116. https://doi.org/10.25514/CHS.2022.2.23006
Раздел
Источники химической опасности. Опасные химические вещества