Современные подходы к разработке эффективных организованных микрогетерогенных систем на основе детергентов для разложения фосфорорганических соединений. Обзор

  • Т.М. Прокопьева Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0003-0867-7449
  • А.Б. Миргородская Институт органической и физической химии им. А.Е. Арбузова, ФРЦ Казанский научный центр РАН, Казань, Россия https://orcid.org/0000-0002-5594-0679
  • И.А. Белоусова Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0003-1534-5506
  • Т.М. Зубарева Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0003-1858-4609
  • М.К. Туровская Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0003-4129-0270
  • Б.В. Панченко Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина
  • Н.Г. Разумова Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0002-5063-1383
  • Т.С. Гайдаш Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0002-6430-2433
  • В.А. Михайлов Государственное учреждение «Институт физико-органической химии и углехимии им. Л.М. Литвиненко», Донецк, Украина https://orcid.org/0000-0002-4184-1805
Ключевые слова: фосфорорганические соединения, катионные и дикатионные ПАВ, мицеллярный катализ

Аннотация

Выяснение закономерностей влияния организованных сред на реакционную способность органических соединений, установление количественных закономерностей «структура–свойство–мицеллярные эффекты» и поиск путей модификации и функционализации микроорганизованных систем открывают широкие перспективы управления скоростями химических реакций. Решение такой задачи напрямую связано с минимизацией актов террористического воздействия и техногенных аварий. Разложение субстратов-экотоксикантов предполагает использование реакционной среды, удовлетворяющей критериям «Green chemistry», что является необходимым условием, и таковыми выступают растворы ПАВ. Для создания высокоэффективных организованных микрогетерогенных систем (ОМС) для катализа на основе димерных ПАВ были реализованы три следующих направления. Первое – варьирование структуры катионных ПАВ в реакциях щелочного гидролиза. Второе – конструирование ПАВ с реакционноспособным противоионом (дигалогенгалогенат) – системы широкого спектра действия, одновременно выступающей источником нуклеофильно-окислительного реагента и реализующей преимущества ОМС. Третье – формирование функционализированных наноразмерных ансамблей, обладающих на порядки более высокой эффективностью, чем не функционализированные. Мицеллярные эффекты в реакциях разложения 4-нитрофениловых эфиров диэтилфосфоновой, диэтилфосфорной и толуолсульфоновой кислот достигают ~ 102  (щелочной гидролиз) – 104 раз (системы на основе функционализированных ПАВ). При этом основной вклад в наблюдаемое ускорение при переносе процесса из воды в мицеллярную псевдофазу вносят эффекты концентрирования реагентов и изменение нуклеофильной реакционной способности. В этом случае важное значение имеют гидрофобные свойства ПАВ и субстратов, природа катионной части головной группы и мостикового звена.

Литература

Kim, K., Tsay, O.G., Atwood, D.A., & Churchill, D.G. (2011). Destruction and detection of chemical warfare agents. Chem. Rev., 111, 5345–5403.https://doi.org/10.1021/cr100193y

Mondal, M.H., Roy, A., Malik, S., Ghosh, A., & Saha, B. (2015). Review on chemically bonded geminis with cationic heads: second-generation interfactants. Res. Chem. Intermed., 42(3), 1913–1928. https://doi.org/10.1007/s11164-015-2125-z

Domínguez-Arca, V., Sabín, J., Taboada, P., García-Río, L., & Prieto, G. (2020). Micellization Thermodynamic Behavior of Gemini Cationic Surfactants. Modeling its Adsorption at Air/Water Interface; J. Mol. Liq, 308(15), 1–48. https://doi.org/10.1016/j.molliq.2020.113100

Duirk, S. E., Desetto, L.M.,  Davis, G. M. (2009). Transformation of Organophosphorus Pesticides in the Presence of Aqueous Chlorine: Kinetics, Pathways, and Structure-Activity Relationships. Environ. Sci. Technol., 43(7), 2335–2340. https://doi.org/10.1021/es802868y

Polarz, S., Kunkel, M., Donner, A., & Schlött, M. (2018). Added-Value Surfactants. Chem. Eur. J., 24(71), 18842–18856. https://doi.org/10.1002/chem.201802279

Kushan, P., Mistry, B. Jana, S., Gupta, S., Devkar, R.V., & Kumar, S. (2015). Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 206, 19–28. https://doi.org/10.1016/j.molliq.2015.01.055

Raynal, M., Ballester, P., Vidal-Ferran, A., & van Leeuwen, Piet W.N.M. (2014). Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev., 43, 1660–1733. https://doi.org/10.1039/c3cs60027k

Deraedt, C., & Didier, A. (2016). Supramolecular nanoreactors for catalysis. Coord. Chem. Rev., 324, 106–122. https://doi.org/10.1016/j.ccr.2016.07.007

Mirgorodskaya, A.B., Zakharova, L.Ya, Khairutdinova, E.I., Lukashenko, S.S., & Sinyashin O.G. (2016). Supramolecular systems based on gemini surfactants for enhancing solubility of spectral probes and drugs in aqueous solution. Colloids and Surfaces A, 510, 33–42. https://doi.org/10.1016/j.colsurfa.2016.07.065

Zakharova, L.Ya., & Konovalov. A.I. (2012). Supramolecular systems based on cationic surfactants and amphiphilic macrocycles. Colloid Journal, 74(2), 194–206. https://doi.org/10.1134/S1061933X12020147

Pavez, P., Oliva, G., & Millán D. (2016). Green solvents as a Promising Approach to Degradation of Organophosphorate Pesticides. ACS Sustain. Chem. Eng., 4(12), 7023–7031. https://doi.org/10.1021/acssuschemeng.6b01923

Bhadani, T., Misono, S., Singh, K., Sakai, H., Sakai, M., & Abe, M. (2016). Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Advances in Colloid and Interface Science., 231(12), 36–58. https://doi.org/10.1016/j.cis.2016.03.005

Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M., Gaidash, T.S., Razumova N.G., Panchenko, B.V., & Mikhailov V.A. (2020). Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II. Alkaline Hydrolysis of Ethyl

-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants. Russ. J. Org. Chem., 56(1), 53–58. https://doi.org/1134/S1070428020010091

Kandpal, N., Dewangan, H.K., Nagwanshi, R., Ghosh, Kallol K., & Satnami, M.L. (2018). Micellar-accelerated hydrolysis of organophosphate and thiophosphates by pyridine oximate. Int. J. Chem. Kinet., 50(11), 827–835. https://doi.org/10.1002/kin.21217

Kandpal, N., Dewangan, H.K., Nagwanshi, R., Ghosh, Kallol K., & Satnami, M.L. (2018). Influence of pyridine oximate and quaternized pyridinium oximate ions on the hydrolysis of phosphate esters in cationic microemulsions. J. Dispersion Sci. Technol., 30, 1–8. https://doi.org/10.1080/01932691.2018.1476151

Mirgorodskaya, A.B., Valeeva, F.G., Lukashenko, S.S., Kushnazarova, R.A., Prokop’eva, T.M., Zubareva, T.M., Mikhailov, V.A., & Zakharova, L.Ya. (2018). Dicationic hydroxylic surfactants: Aggregation behavior, guest-host interaction and catalytic effect. J. Mol. Liq., 250, 229–235. https://doi.org/10.1016/j.molliq.2017.11.175

Samiey, B., Cheng, C.-H., & Wu, J. (2014). Effects of Surfactants on the Rate of Chemical Reactions J. Chem., 2014, 1–4. http://dx.doi.org/10.1155/2014/908476

Bedford, C.T. Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives. In: Organic Reaction Mechanisms 2014 / Ed. A.C. Knipe – Wiley, 2018. – P. 87–122.

Wagner, G.W., Sorrick, D.C., Procell, L.R., Brickhouse, M.D., Mcvey, I.F., & Schwartz, L.I. (2007). Decontamination of VX, GD, and HD on a Sulface Using Modified Vaporized Hydrogen Peroxide. Langmuir, 23(3), 1178–1186. https://doi.org/10.1021/la062708i

Yang, Yu-Chu, (1999). Chemical Detoxification of Nerve Agent VX. Acc. Chem. Res., 32(2), 109–115. https://doi.org/10.1021/ar970154s

Talmage, S.S., Watson, A.P., Hauschild, V., Munro, N.B., & King J. (2007). Chemical Warfare Agent Degradation and Decontamination. Curr. Org. Chem., 11(3), 285–298. https://doi.org/10.2174/138527207779940892

Cassagne, T., Cristau, H.-J., Delmas, G., Desgranges, M., Lion, C., Magnaud, G., Torreilles, É., & Virieux, D. (2001). Destruction of Chemical Warfare Agents VX and Soman by

-Nucleophiles as Oxidizing Agents. Heteroat. Chem., 12(6), 485–490. https://doi.org/10.1002/hc.1074

Wagner, G.W., & Yang, Yu-Chu (2002). Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents. Ind. Eng. Chem. Res., 41(8), 1925–1928. https://doi.org/10.1021/ie010732f

Yang, Yu-Chu, Baker, J.A., & Ward, J.R. (1992). Decontamination of Chemical Warfare Agents. Chem. Rev., 92(8), 1729–1743. https://doi.org/10.1021/cr00016a003

Yao, H., & Richardson, D.E. (2003). Bicarbonate Surfoxidants: Micellar Oxidations of Aryl Sulfides with Bicarbonate-Activated Hydrogen Peroxide. J. Am. Chem. Soc., 125(20), 6211–6221. https://doi.org/10.1021/ja0274756

Bunton, C.A., & Gillitt, N.D. (2002). Oxidation of Thioanisole by peroxomolybdate ions: direct oxygen transfer from tetraperoxomolybdate ion. J. Phys. Org. Chem., 15(1), 29–35. https://doi.org/10.1002/poc.442

Ghosh, K.K., Tiwari, S., Marek, J. & Kuca, K. (2010). New insights into detoxification of chemical warfare simulants and pesticides using micelle mediated systems. Main Group Chemistry, 9(3,4), 337 - 353. https://doi.org/10.3233/MGC-2010-0026.

Singh, N., Karpichev, Ye., Tiwari, A.K., Kuca, K., & Ghosh, Kallol K. (2015). Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. J. Mol. Liq., 208, 237–252. https://doi.org/10.1016/j.molliq.2015.04.010

Kapitanov, I.V., Mirgorodskaya, A.B., Valeeva, F.G., Gathergood, N., Kuca, K., Zakharova, L.Ya., & Karpichev, Ye. (2017). Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids and Surfaces A, 524, 143–159. https://doi.org/10.1016/j.colsurfa.2017.04.039

Manfredi, A.M., Demos, W., Wanderlind, E.H., Silva, B.V., Pinto, A.C., Souza, B.S. & Nome, F. (2016). Rapid cleavage of phosphate triesters by the oxime 2-(hydroxyimino)-N-phenyl-acetamide. J. Phys. Org. Chem., 29(11), 600–603. https://doi.org/10.1002/poc.3549

Prokop'eva, T.M., Simanenko, Yu.S., Suprun, I.P., Savelova, V.A., Zubareva, T.M., & Karpichev, E.A. (2001). Nucleophilic Substitution at a Four-Coordinate Sulfur Atom: VI. Reactivity of Oximate Ions. Russ. J. Org. Chem., 37(5), 655–666. https://doi.org/10.1023/A:1012487415041

Simanenko, Yu.S., Prokop’eva, T.M., Popov, A.F., Bunton, C.A., Karpichev, E.A., Savelova, V.A., & Ghosh, K.K. (2004). O-nucleophilicity of hydroxamate ions in reactions with ethyl

-nitrophenyl ethylphosphonate, diethyl 4-nitrophenyl phosphate, and 4-nitrophenyl

-toluenesulfonate. Russ. J. Org. Chem., 40(9), 1337–1350. https://doi.org/10.1007/s11178-005-0017-1

Prokop’eva, T.M., Simanenko, Yu.S., Karpichev, E.A., Savelova, V.A., & Popov A.F. (2004). O-nucleophilic features of amidoximes in acyl group transfer reactions. Russ. J. Org. Chem., 40(11), 1617–1629. https://doi.org/10.1007/s11178-005-0068-3

Pavez, P., Oliva, G., & Millán, D. (2016). Green Solvents as a Promising Approach to Degradation of Organophosphorate Pesticides ACS Sustain. Chem., Eng., 4(12), 7023–7031. https://doi.org/10.1021/acssuschemeng.6b01923

Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Savelova, V.A., Suprun, I.P., & Bunton, C.A. (2002). Inorganic Anionic Oxygen-Containing α-Nucleophiles - Effective Acyl Group Acceptors: Hydroxylamine Ranks First among the α-Nucleophile Series. Russ. J. Org. Chem., 38(9), 1286 - 1298. https://doi.org/10.1023/A:1021699628721

Simanenko, Yu.S., Popov, A.F., Prokop’eva T.M., Saviolova,V.A., Belousova, I.A., Zubareva, T.M. (1994) Anion hydroxylamine as a powerful acyl group acceptor. Mendeleev Commun., 4(6), 210 - 212. https://doi.org/10.1070/MC1994v004n06ABEH000417

Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Red'ko, A.N., Prokop'eva, T.M., & Popov, A.F. (2012). Cleavable dicationic surfactant micellar system for the decomposition of organophosphorus compounds. Theor. Exp. Chem., 47(6), 377–383. https://doi.org/10.1007/s11237-012-9230-5

Pisárčik, M., Polakovičová, M., Markuliak, M., Lukáč M., & Devínsky, F. (2019). Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules, 24, 1–13. https://doi.org/10.3390/molecules24081481

Zahran, M.K., Negm, N.A., & Mahmoud, W.A. (2013). Synthesis and Surface Activity of Some Cationic Gemini Surfactants Containing Aliphatic Spacers. Egypt. J. Chem., 56(1), 35 - 47.

Kandpal, N., Dewangan, H.K., Nagwanshi, R., & Satnami, M.L. (2018). Influence of pyridine oximate and quaternized pyridinium oximate ions on the hydrolysis of phosphate esters in cationic microemulsions. J. Dispersion Sci. Technol., 30, 1–8. https://doi.org/10.1080/01932691.2018.1476151

Zhuang, L.-H., Yu, K.-H. , Wang, G.-W., & Yao, C. (2013). Synthesis and properties of novel ester-containing gemini imidazolium surfactants. J. Colloid Interface Sci., 408, 94–100. https://doi.org/10.1016/j.jcis.2013.07.029

Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97(1-3), 205 - 253. https://doi.org/10.1016/s0001-8686(01)00069-0

Severs, N.J. (2007). Freeze-fracture electron microscopy. Nat. Protoc. 2(3), 547–576. https://doi.org/10.1038/nprot.2007.55

Simanenko, Yu.S., Popov, A.F., Karpichev, E.A., Prokop'eva, T.M., Savelova, V.A., & Bunton, C.A. (2002). Micelle Effects of Functionalized Surfactants, 1-Cetyl-3-(2-hydroxyiminopropyl)imidazolium Halides, in Reactions with p-Nitrophenyl

p-Toluenesulfonate, Diethyl p-Nitrophenyl Phosphate, and Ethyl p-Nitrophenyl Ethylphosphonate. Russ. J. Org. Chem., 38(9), 1314–1325. https://doi.org/10.1023/A:1021655813700

Simanenko, Yu.S., Karpichev, E.A., Prokop'eva, T.M., Lattes, A., Popov, A.F., Savelova, V.A., & Belousova I.A. (2004). Functional Detergents Containing an Imidazole Ring and Typical Fragments of α-Nucleophiles Underlying Micellar Systems for Cleavage of Esters of Phosphorus Acids. Russ. J. Org. Chem., 40(2), 206–218. https://doi.org/10.1023/B:RUJO.0000034943.58369.eb

Anikeev, A.V., Zubareva, T.M., Belousova, I.A., Prokopyeva, T.M., & Popov, A.F. (2010). Aggregative Properties and Electrochemical Characteristics of the Dimeric Detergents Synthesized from Diepoxides. Him. Fiz. Tehnol. Poverhni, 1(4), 450–456 (in Russ).

Zana, R., Benrraou, M., & Rueff, R. (1991). Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants. 1. Effect of the Spacer Chain length on the Critical Micelle Concentration and Micelle Ionization Degree. Langmuir, 7(6), 1072–1075. https://doi.org/10.1021/la00054a008

Anikeev, A.V., Prokopyeva, T.M., Zubareva, T.M., & Popov, A.F. (2010). Some physico-chemical properties of dimeric detergents based on tertiary diamines. Ukr. Chem. J., 76(5-6), 51–55 (in Russ).

Mikhailov, V.A., Yufit, D.S., & Struchkov, Yu.T. (1992). Reaction of bromine with

N,N-dialkylacetamides. J. Gen. Chem. USSR, 62(2), 322–327 (in Russ).

Savelova, V.A., Bunton, C.A., Prokop’eva, T.M., Turovskaya, M.K., Karpichev, E.A., Mikhailov, V.A., Kanibolotskii, A.L., Burakov, N.I., & Popov, A.F. (2004). Organotrihalide Complexes: α-Nucleophiles and Effective Oxidizing Agents in Decomposition Reactions of Organophosphorus Compounds in Water and Surfactant Micelles. Theor. Exp. Chem., 40(5), 300–308. https://doi.org/10.1023/B:THEC.0000049076.85204.82

Karpichev, E.A., Prokop'eva, T.M., Turovskaya, M.K., Mikhailov, V.A., Kapitanov, I.V., Savelova, V.A., & Popov, A.F. (2007). Micellar effects of cetyltrimethylammonium dibromobromate in phosphoryl group transfer reactions. Theor. Exp. Chem., 43(4), 241–246. https://doi.org/10.1007/s11237-007-0028-9

Kapitanov, I.V., Belousova, I.A., Turovskaya, M.K., Karpichev, E.A., Prokop’eva, T.M., & Popov, A.F. (2012). Reactivity of micellar systems based on supernucleophilic functional surfactants in processes of acyl group transfer. Russ. J. Org. Chem., 48(5), 651–662. https://doi.org/10.1134/S1070428012050041

Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., & Popov, A.F. (2013). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: I. Reactivity of a hydroxyimino derivative of gemini imidazolium surfactant. Russ. J. Org. Chem., 49(9), 1291–1299. https://doi.org/10.1134/S1070428013090091

Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., & Popov, A. F. (2014). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: II. Influence of the length of hydrophobic alkyl substituents on micellar effects of functionalized monomeric and dimeric imidazolium surfactants. Russ. J. Org. Chem., 50(5), 694–704. https://doi.org/10.1134/S1070428014050133

Prokop'eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Turovskaya, M.K., Razumova, N.G., & Popov, A.F. (2015). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids. III. Reactivity of mixed micellar systems based on tetraalkylammonium and imidazolium surfactants. Russ. J. Org. Chem., 51(8), 1083–1090. https://doi.org/10.1134/S1070428015080047

Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Turovskaya, M.K., Prokop'eva, T.M., & Popov, A.F. (2008). Structure of the head group, nucleophilicity, and micellar effects of functional detergents in acyl transfer reactions. Theor. Exp. Chem., 44(2), 93–100. https://doi.org/10.1007/s11237-008-9015-z

Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Mikhailov, V.A., Razumova, N.G., Prokop'eva, T.M., & Popov, A.F. (2008). Reactivity of functional detergents with a pyridine ring and an α-nucleophile fragment in the head group. Theor. Exp. Chem., 44(5), 292–299. https://doi.org/10.1007/s11237-008-9044-7

Turovskaya, M.K., Kapitanov, I.V., Belousova, I.A., Tuchinskaya, K.K., Shumeiko, A.E., Kostrikin, M.L., Razumova, N.G., Prokop'eva, T.M., & Popov, A.F. (2011). Reactivity of micelle-forming 1-alkyl-3(1-oximinoethyl)pyridinium bromides in acyl group transfer reactions. Theor. Exp. Chem., 47(1), 21–29. https://doi.org/10.1007/s11237-011-9179-9

Turovskaya, M.K., Prokop'eva, T.M., Karpichev, E.A., Shumeiko, A.E., Kostrikin, M.L., Savelova, V.A., Kapitanov, I.V., & Popov, A.F. (2006). Nucleophilicity of functional surface active substances in the transfer of phosphoryl groups. Theor. Exp. Chem., 42(5), 295–302. https://doi.org/10.1007/s11237-006-0056-x

Prokop'eva, T.M., Karpichev, E.A., Belousova, I.A., Turovskaya, M.K., Shumeiko, A.E., Kostrikin, M.L., Razumova, N.G., Kapitanov, I.V., & Popov, A.F. (2010). Characteristic features of the change in reactivity of supernucleophilic functional surfactants in acyl group transfer processes. Theor. Exp. Chem., 46(2), 94–101. https://doi.org/10.1007/s11237-010-9124-3

Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Anikeev, A.V., Turovskaya, M.K., Zubareva, T.M., Panchenko, B.V., Prokop'eva, T.M., & Popov, A.F. (2010). Role of the hydrophobic properties of functional detergents on micellar effects in the dissociation of environmental toxicants. Theor. Exp. Chem., 46(4), 225–232. https://doi.org/10.1007/s11237-010-9144-z

Kapitanov, I.V., Belousova, I.A., Kostrikin, M.L, Prokop’eva, T.M., & Karpichev, A.E. (2015). Acyl transfers in monomeric and dimeric oximatefunctionalized surfactant micelles. VIth International Chemistry Conference “Toulouse – Kiev” (ICTK-8), 1-4 June 2015. P.184 (P109).

Kapitanov, I.V., Serdyuk, A.A., Shumeiko, Prokop’eva, T.M., & Karpichev, E.A.Popov, A.F. (2017). Acid-base properties of functionalized surfactants in micellar systems. Ukr. Chem. J., 83(8), 94–102. (in Russ).

Khan, M.N. (2006). Micellar Catalysis. Surfactant Science Series. 133., Boca Raton: CRC Press. P. 482. https://doi.org/10.1201/9781420015843

Handbook of applied surface and colloid chemistry (2001) / ed. by K.Holmberg. – Weinheim, England: Wiley-VCH Verlag GmbH & Co. KGaA., P. 1100

Patel, U., Parekh, P., Sastry, N.V., Aswal, V.K., & Bahadur, P. J. (2017). Surface activity, micellization and solubilization of cationic Gemini surfactant – conventional surfactants mixed systems. Mol. Liq., 225, 888–896. https://doi.org/10.1016/j.molliq.2016.11.017

Kamboj, R., Singh, S., Bhadani, A., Kataria, H., & Kaur, G. (2012). Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study. Langmuir, 28, 11969–11978. https://doi.org/10.1021/la300920p

Alam, Md.S., Siddig, A.M., & Mandal, A.B. (2018). The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants. Russ. J. Phys. Chem. A, 92(1), 185–190. https://doi.org/10.1134/s0036024418010028

Scholz, N., Behnke, T., & Resch-Genger, U. (2018). Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension – A Method Comparison. J. Fluor., 28(1), 465–476. https://doi.org/10.1007/s10895-018-2209-4

Zhang, Q., Gao, Z., Xu, F., & Tai, S. (2012). Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: An electrical conductivity study. J. Coll. Interface Sci., 371, 73–81. https://doi.org/10.1016/j.jcis.2011.12.076

Prokop’eva, T.M., Belousova, I.A., Turovskaya, M.K., Razumova, N.G., Panchenko, B.V., & Mikhailov, V.A. (2018). Supernucleophilic Systems Underlain by Functionalized Surfactants in Cleavage of 4-Nitrophenyl Esters of Phosphorus and Sulfur Acids: IV. Micellar Effects of Functionalized Surfactants with a Variable Nature of the Head Group and Hydrophobicity in Transfer Reactions of the Phosphonyl Group. Russ. J. Org. Chem., 54(11), 1630–1637. https://doi.org/10.1134/S1070428018110027

Bhattacharya, S., & Kumar, V.P. (2004). Evidence of Enhanced Reactivity of DAAP Nucleophiles toward Dephosphorylation and Deacylation Reactions in Cationic Gemini Micellar Media. J. Org. Chem., 69(2), 559–562. https://doi.org/10.1021/jo034745+

Bunton, C.A. (2006). The dependence of micellar rate effects upon reaction mechanism. Adv. Coll. Interface Sci., 123–126, 333–343. https://doi.org/10.1016/j.cis.2006.05.008

Berezin, I.V., Martinek, K., & Yatsimirskii, A.K. (1973). Physicochemical Foundations of Micellar Catalysis. Russ. Chem. Rev., 42(10), 787–802. https://doi.org/10.1070/rc1973v042n10abeh002744

Wetting, S.D., & Verrall, R.E. (2001). Thermodynamic Studies of Aqueous m-s-m Gemini Surfactants. J. Coll. Interface Sci., 235, 310–316. https://doi 10.1006/jcis.2000.7348

Sood, A.K., & Sharma, S. (2016). Influence of organic solvents and temperature on the micel-lization of conventional and gemini surfactants: a conductometric study. Phys. Chem. Liq., 54, 574–588. https:/ doi 10.1080/00319104.2016.1139711

Banipal, T.S., Sood, A.K., & Singh, K. (2011). Micellization Behavior of the 14-2-14 Gemini Surfactant with Some Conventional Surfactants at Different Temperatures. J. Surfactants Deterg., 14, 235–244. https://doi 10.1007/s11743-010-1217-4

Sood, A.K., Singh, K., Kaur, J., & Banipal, T.S. (2012). Mixed Micellization Behavior of m-2-m Gemini Surfactants with Some Conventional Surfactants at Different Temperatures.

J. Surfactants Deterg., 15(3), 327–338. https://doi 10.1007/s11743-011-1314-z

Wetting, S.D., Novak, P., & Verrall, R.E. (2002). Thermodynamic and Aggregation Properties of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution. Langmuir, 18, 5354–5359. https://doi 10.1021/la011782s

Pal, J., Datta, S., Aswal, V.K., & Bhattacharya, S. (2012). Small-Angle Neutron-Scattering Studies of Mixed Micellar Structures Made of Dimeric Surfactants Having Imidazolium and Ammonium Headgroups. J. Phys. Chem. B., 116, 13239–13247. https://doi 10.1021/jp304700t

Buncel, E., & Um, I.-H. (2004). The α-effect and its modulation by solvent. Tetrahedron, 60(36), 7801–7825. https://doi.org/10.1016/j.tet.2004.05.006

Simanenko, Yu.S., Prokop'eva, T.M., Bunton, C.A., Savelova, V.A., Turovskaya, M.K., Karpichev, E.A., Mikhailov, V.A., & Popov, A.F. (2004). Supernucleophilic reactivity of hypobromite ion toward 4-nitrophenyl diethylphosphonate in water and micelles of cetyltrimethylammonium bromide. Theor. Exp. Chem., 40(3), 154–160. https://doi.org/10.1023/B:THEC.0000036210.02532.8c

Saikia, I., Borah, A.J., & Phukan, P. (2016). Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev., 116(12), 6837–7042. https://doi.org/10.1021/acs.chemrev.5b00400

Wu, X., Peng, X., Dong, X., & Dai, Z. (2012). Synthesis of 5-Bromo-2-Furfural under Solvent-Free Conditions using 1-Butyl-3-Methylimidazolium Tribromide as Brominating Agent. Asian J. Chem., 24(2), 927–928. http://www.asianjournalofchemistry.co.in

Li, Z., Sun, X., Wang, L., Li, Y., & Ma, Y. (2010). Silica-Supported Quinolinium Tribromide: A Recoverable Solid Brominating Reagent for Regioselective Monobromination of Aromatic Amines. J. Braz. Chem. Soc., 21(3), 496–501. https://doi.org/10.1590/S0103-50532010000300015

Wu, L.-Q., Yang, C.-G., Wu, Y.-F., & Yang, L.-M. (2009). Synthesis of

-Bromocoumarins using Tetrabutylammonium Tribromide as a Selective Brominating Agent and an Efficient Generator of HBr. J. Chin. Chem. Soc., 56(3), 606–608. https://doi.org/10.1002/jccs.200900090

Kar, G., Saikia, A.K., Bora, U., Dehury, S.K., & Chaudhuri M.K. (2003). Synthesis of Cetyltrimethylammonium Tribromide (CTMATB) and its Application in the Selective Oxidation of Sulfides to Sulfoxides. Tetrahedron Lett., 44(24), 4503–4505. https://doi.org/10.1016/S0040-4039(03)01015-3

Pourmousavi, S.A., & Salehi, P. (2009). Synthesis of Benzyl Triethyl Ammonium Tribromide and its Application as a Highly Efficient and Regioselective Reagent for the Bromination of Activated Aromatic Compounds. Acta Chim. Slov., 56(3), 734–739. http://acta-arhiv.chem-soc.si>56>56-03-734

Prokop’eva, T.M., Mikhailov, V.A., Turovskaya, M.K., Karpichev, E.A., Burakov, N.I., Savelova, V.A., Kapitanov, I.V., & Popov, A.F. (2008). New sources of “active” halogen bis(dialkylamide)hydrogen dibromobromates, efficient reagents for destruction of ecotoxicants. Russ. J. Org. Chem., 44(5), 637–646. https://doi.org/10.1134/S1070428008050011

Kelley, C. M., & Tartar, H. V. (1956). On the System: Bromine-W. J. Amer. Chem. Soc., 78(22), 5752–5756. https://doi.org/10.1021/ja01603a010

Turovskaya, M.K., Mikhailov, V.A., Burakov, N.I., Kapitanov, I.V., Zubareva, T.M., Lobachev, V.L., Panchenko, B.V., & Prokop’eva, T.M. (2017). Reactivity of inorganic

α-nucleophiles in acyl group transfer processes in water and surfactant micelles: I. Systems based on organic complexes of tribromide anion. Russ. J. Org. Chem., 53(3), 351–358. https://doi.org/10.1134/S107042801703006X

Brycki, B., Kowalczyk, I., Szulc, A., Kaczerewska, O., Pakiet, M. (2017), Najjar, R. (Ed.). Multi-functional gemini surfactants: structure, synthesis, properties and applications Application and Characterization of Surfactants. InTech, Rijeka, 97–155. https://doi.org/10.5772/intechopen.68755

Lombardo, D., Kiselev, M.A., Magazù, S., & Calandrabhan, P. (2015). Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches.

Adv. Condensed Matter Phys., 2015, 1–22. https://doi.org/10.1155/2015/151683

Mirgorodskaya, A.B., Kudryavtseva, L.A., Pankratov, V.A., Lukashenko, S.S., Rizvanova, L.Z., & Konovalov, A.I. (2006). Geminal Alkylammonium Surfactants: Aggregation Properties Catalytic Activity. Russ. J. Gen. Chem., 76(10), 1625–1631. https://doi.org/10.1134/S1070363206100215

Kotenko, A.A., Hilko, S.L., Prokopieva, T.M., & Mikhailov, V.A. (2019). Micellisation of cetyltrimethylammonium dihalogenohalogenates in water under basic conditions. Bulletin of Donetsk National University. Series A: Natural Sciences, No. 1, 90–99 (in Russ).

Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Belousova, I.A., & Savelova, V.A. (2002). Micellar effects of cationic detergents in the decomposition of ecotoxic substrates by hydroxide ion. Theor. Exp. Chem., 38(4), 242–249. https://doi.org/10.1023/A:1020515831658

Solomoichenko, T.N., Sadovskii, Yu.S., Prokop'eva, T.M., Karpichev, E.A., Kapitanov, I.V., Piskunova, Zh.P., Savelova, V.A., & Popov, A.F. (2006). Micellar effects of surfactants in cleavage of 4-nitrophenyl diethyl phosphonate by hydroperoxide anion. Theor. Exp. Chem., 42(6), 364–370. https://doi.org/10.1007/s11237-006-0067-7

Moss, R.A., Scrimin, P., Bhattacharya, S., & Swarup, S. (1987). An imidazole-functionalized phosphatidylcholine derivative: nucleophilic vesicles with adjustable reactivity.

J. Am. Chem. Soc., 109(20), 6209–6210. https://doi.org/10.1021/ja00254a064

Brown, J.M., Bunton, C.A., Diaz, S., & Ihara, Y. (1980). Dephosphorylation in functional micelles. The role of the imidazole group. J. Org. Chem., 45(21), 4169–4174. https://doi.org/10.1021/jo01309a021

Moss, R.A., Nahas, R.C., & Lukas, T.J. (1978). A cysteine-functionalized micellar catalyst. Tetrahedron Lett., 19(6), 507–510. https://doi.org/10.1016/S0040-4039(01)85318-1

Bunton, C.A., McAneny, M. (1976). Micellar effects on the hydrolysis of p-nitrobenzoyl choline and the related N-hexadecyl ester. J. Org. Chem., 41(1), 36–39. https://doi.org/10.1021/jo00863a008

Moss, R.A., & Ihara, Y. (1983). Cleavage of phosphate esters by hydroxyl-functionalized micellar and vesicular reagents. J. Org. Chem., 48(4), 588–592. https://doi.org/10.1021/jo00152a035

Moss, R.A., Bizzigotti, G.O., & Huang, C.-W. (1980). Nucleophilic esterolytic and displacement reactions of a micellar thiocholine surfactant. J. Am. Chem. Soc., 102(2), 754–762. https://doi.org/10.1021/ja00522a053

Epstein, J., Kaminski, J.J., Bodor, N., Enever, R., Sowa, J., & Higuchi, T. (1978). Micellar acceleration of organophosphate hydrolysis by hydroximinomethylpyridinium type surfactants. J. Org. Chem., 43(14), 2816–2821. https://doi.org/10.1021/jo00408a015

Cibulka, R., Hampl, F., Kotoučová, H., Mazáč, J., & Liška, F. (2000). Quaternary pyridinium ketoximes – new efficient micellar hydrolytic catalysts. Collect. Czech. Chem. Comm., 65(2), 227–242. https://doi.org/10.1135/cccc20000227

Kivala, M., Cibulka, R., & Hampl, F. (2006). Cleavage of 4-nitrophenyl diphenyl phosphate by isomeric quaternary pyridinium ketoximes – how can structure and lipophilicity of functional surfactants influence their reactivity in micelles and microemulsions? Collect. Czech. Chem. Comm., 71(11-12), 1642–1658. https://doi.org/10.1135/cccc20061642

Simanenko, Yu.S., Karpichev, Eu.A., Prokop'eva, T.M., Panchenko, B.V., & Bunton, C.A. (2001). Micelles of an oxime functionalized imidazolium surfactant. Reactivities at phosphoryl and sulfonyl groups. Langmuir, 17(3), 581–582. https://doi.org/10.1021/la001327g

Moss, R.A., & Ganguli, S. (1989). Iodosobenzoate-functionalized surfactant vesicles: adjustable reactivity in reactive phosphate cleavage. Tetrahedron Lett., 30(16), 2071–2074. https://doi.org/10.1016/S0040-4039(01)93714-1

Moss, & R.A., Zhang, H. (1993). Toward a broad spectrum decontaminant for reactive toxic phosphates/phosphonates: N-alkyl-3-iodosopyridinium-4-carboxylates. Tetrahedron Lett., 34(39), 6225–6228. https://doi.org/10.1016/S0040-4039(00)73716-6

Prokop’eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Serdyuk, A.A., Turovskaya, M.K., & Razumova, N.G. (2017). Reactivity of co-micellar systems based on dimeric functionalized tetraalkylammonium surfactant in phosphoryl and sulfonyl group transfer processes. Russ. J. Org. Chem. 53(4), 510–513. https://doi.org/10.1134/S1070428017040029

Terrier, F., Rodríguez-Dafonte, P., Le Guével E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem. 4(23), 4352–4363. https://doi.org/10.1039/b609658c

Senatore, L., Ciuffarin, E., Fava, A., & Levita, G. (1973). Nucleophilic substitution at sulfur. Effect of nucleophile and leaving group basicity as probe of bond formation and breaking. J. Am. Chem. Soc., 95(9), 2918–2922. https://doi.org/10.1021/ja00790a031

Hupe, D.J., & Jencks, W.P. (1977). Nonlinear Structure-Reactivity Correlations. Acyl Transfer between Sulfur and Oxygen Nucleophiles. J. Am. Chem. Soc., 99(2), 451–464. https://doi.org/10.1021/ja00444a023

Jencks, W.P., Brant, S.R., Gandler, J.R., Fendrich, G., & Nakamura, C. (1982). Nonlinear Bronsted Correlations: The Roles of Resonance, Solvation and Changing Transion-State Structure. J. Am. Chem. Soc., 104(25), 7045–7051. https://doi.org/10.1021/ja00389a027

Simanenko, Yu.S., Prokopeva, T.M., Savyolova, V.A., Zakhalichnaya, L.P., Belousova, I.A., Popov, A.F., & Sakhulin, G.S. (1989). Nucleophilic substitution at tetracoordinated sulfur atom. III. Reactivity of anionic oxygen-containing nucleophiles - arylate and alcoholate ions. Organic Reactivity, 26(1-2), 28–54. https://dspace.ut.ee/handle/10062/54382

Savyolova, V.A., Karpichev, Eu.A., Simanenko, Yu.S., Prokop’eva, T.M., Lobachev, V.L., & Belousova, I.A. (1996), Nucleophilic substitution at tetracoordinated sulfur. IV. Reactivity of anionic oxygen nucleophiles. Russ. J. Org. Chem., 32(4), 551–560.

Epstein, J., Cannon, P.L., Michel, H.O., Hackley, B.E., & Mosher, W.A. (1967). Charge effect in nucleophilic displacement reactions. J. Am. Chem. Soc., 89(12), 2937–2943. https://doi.org/10.1021/ja00988a023

Kumar, B., Tikariha, D., Ghosh, K.K., Barbero, N., & Quagliotto P. (2013). Kinetic study on effect of novel cationic dimeric surfactants for the cleavage of carboxylate ester. J. Phys Org. Chem., 26(8), 626–631. https://doi.org/10.1002/poc.3141

Geng, Y., Romsted, L.S., & Menger, F. (2006). Specific ion pairing and interfacial hydration as controlling factors in gemini micelle morphology. Chemical trapping studies. J. Am. Chem. Soc., 128(2), 492–501. https://doi.org/10.1021/ja056807e

Morales-Rojas, H., & Moss, R.A. (2002). Phosphorolytic Reactivity of o-Iodosylcarboxylates and Related Nucleophiles. Chem. Rev., 102(7), 2497–2522. https://doi.org/10.1021/cr9405462

Pang, Q.-H., Zang, R.-R., Kang, G.-L., Li, J.-M., Hu W., Meng X.-G., & Zeng, X.-C. (2006). Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Gemini Surfactants with Different Hydrophobic Tail Groups. J. Dispersion Sci. Technol., 27(5), 671–675. https://doi.org/10.1080/01932690600660541

Oda, R., Huc, I., & Candau, S.J. (1997). Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chem. Commun., 21(21), 2105–2106. https://doi.org/10.1039/a704069e

Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications / Ed. by R. Zana, J. Xia. – N.Y.: Marcel Dekker, 2004. P. 331.

Опубликован
2021-12-17
Как цитировать
Прокопьева, Т., Миргородская, А., Белоусова, И., Зубарева, Т., Туровская, М., Панченко, Б., Разумова, Н., Гайдаш, Т., & Михайлов, В. (2021). Современные подходы к разработке эффективных организованных микрогетерогенных систем на основе детергентов для разложения фосфорорганических соединений. Обзор. Химическая безопасность, 5(2), 8 - 48. https://doi.org/10.25514/CHS.2021.2.20001
Раздел
Технологии ликвидации источников химической опасности