Возможность применения иммобилизованных дрожжей для биосорбции тяжелых металлов из водных сред

  • А. Ю. Муравьева Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный технический университет», г. Тверь, Россия https://orcid.org/0000-0002-8626-4351
  • А. А. Степачёва Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный технический университет», г. Тверь, Россия https://orcid.org/0000-0001-9366-5201
  • В. П. Молчанов Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный технический университет», г. Тверь, Россия https://orcid.org/0000-0003-3038-0406
Ключевые слова: тяжелые металлы, биосорбция, дрожжи, иммобилизация

Аннотация

Рассмотрена возможность использования биосорбции микроорганизмами как один из вариантов решения проблемы очистки сточных вод от тяжелых металлов, представляющих серьезную опасность, учитывая их высокую токсичность и способность накапливаться в живых организмах. Представлены результаты исследований по извлечению четырех типов ионов тяжелых металлов (Co(II), Cu(II), Ni(II), Cr(III)) из водных растворов культурами дрожжей, иммобилизованных на диоксиде кремния и альгинатном геле. Показано, что Saccharomyces cerevisiae, иммобилизованные на диоксиде кремния адсорбционным методом в оптимальных условиях позволяют сорбировать до 75% ионов меди, 90% ионов кобальта и никеля и 60% ионов хрома, сохраняя эффективность своей работы как минимум в трех последовательных циклах. При этом применение сшивающего агента (глутарового альдегида) обеспечивало повышение эффективности биосорбции на 3–5%. Таким образом, полученные результаты подтверждают, что иммобилизация микроорганизмов адсорбционным методом является перспективным методом для применения в биологической очистке воды от ионов тяжелых металлов.

Литература

Leoni, L., & Sartori, F. (1996). Heavy metals and arsenic in sediments from the continental shelf of the Northern Tyrrhenian. Eastern Ligurian Seas. Marine environmental research, 41(1), 73 - 98. https://doi.org/10.1016/0141-1136(94)00153-7

Mendil, D., & Uluözlu, Ö.D. (2007). Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101(2), 739 - 745. https://doi.org/10.1016/j.foodchem.2006.01.050

Demirak, A., Yilmaz, F., Levent Tuna, A., & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63(9), 1451 - 1458. https://doi.org/10.1016/j.chemosphere.2005.09.033

Fernandes, C., Fontainhas-Fernandes, A., Peixoto, F., & Salgado, M.A. (2007). Bioaccumulation of heavy metals in Liza saliens from the Esmoriz – Paramos coastal lagoon, Portugal. Ecotoxicology and Environmental Safety, 66(3), 426 - 431. https://doi.org/10.1016/j.ecoenv.2006.02.007

Vardhan, K.H., Kumar, P.S., & Panda, R.C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197

Loska, K., & Wiechuła, D. (2004). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723 - 733. https://doi.org/10.1016/S0045-6535(03)00187-5

Sankhla, M.S., Kumari, M., Nandan, M. Kumar, R., & Agrawal, P. (2016). Heavy metals contamination in water and their hazardous effect on human health - a review. International Journal of Current Microbiology and Applied Science, 5(10), 759 - 766. http://dx.doi.org/10.2139/ssrn.3428216

Biney, C., Amuzu, F., Calamari, D., Kaba, N., & Mbome, I. (1994). Review of heavy metals in the African aquatic environment. Ecotoxicology and Environmental Safety, 28(2), 134 - 159. https://doi.org/10.1006/eesa.1994.1041

Alloway, B.J. (2004). Heavy metals in soils. Netherlands: Springer.

Tchounwou, P.B., Centeno, J.A., & Patlolla, A.K. (2013). Arsenic toxicity, mutagenesis and carcinogenesis – a health risk assessment and management approach. Molecular and Cellular Biochemistry, 255(1-2), 47 - 55. https://doi.org/10.1023/B:MCBI.0000007260.32981.b9

Yedjou, C.G. ( 2008). Oxidative stress in human leukemia cells (HL-60), human liver carcinoma cells (HepG2) and human Jerkat-T cells exposed to arsenic trioxide. Metal Ions in Biology and Medicine, 9, 298 - 303.

Yershov, Yu.A., & Pletneva, T.V. (1989). Mechanisms of toxic action of inorganic compounds. M.: Medicine (in Russ.).

Skugoreva, S.G., Ashikhmina, T.Ya., Fokina, A.I., & Lyalina, E.I. (2016). Chemical grounds of toxic effect of heavy metals (review). Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology, 1, 4-13 (in Russ.).

Tchounwou, P.B., Ishaque, A.B., & Schneider, J. (2012). Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Molecular and Cellular Biochemistry, 222(1-2), 21 - 28. https://doi.org/10.1023/A:1017922114201

Patlolla, A., Barnes, C., Yedjou, C., & Velma, V. (2009). Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environmental toxicology, 24(1), 66 - 73. https://doi.org/10.1002/tox.20395

Tchounwou, P.B., Yedjou, C.G., Foxx, D., Ishaque, A., & Shen, E. (2001). Lead-induced cytotoxicity and transcriptional activation of stress genes in human live carcinoma cells (HepG2). Molecular and cellular biochemistry, 255(1-2), 161 - 170. https://doi.org/10.1023/A:1017922114201

Sutton, D.J. (2012). Mercury induces the externalization of phosphatidylserine in human proximal tubule (HK-2) cells. International Journal of Environmental Research and Public Health, 4(2), 138 - 144. https://doi.org/10.3390/ijerph2007040008

Hamer, D.H. (1986). Metallothioneins. Annual Review of Biochemistry, 55, 913 - 951. https://doi.org/10.1146/annurev.bi.55.070186.004405

Norheim, G. (1987). Levels and interactions of heavy metals in seabirds from Svalbard and the Antarctic. Environmental Pollution, 47, 83 - 94. https://doi.org/10.1016/0269-7491(87)90039-X

Davis, J.M., & Russel, R. (1988). The influence of dissolved selenium compounds on the accumulation of inorganic and methylated mercury compounds from solution by the mussel Mytilus edulis and the plaice Pleuronectes platessa. Science of the Total Environment, 68, 197 - 205. https://doi.org/10.1016/0048-9697(88)90372-5

Сoronelli, T.V. (1996). Principles and methods for raising the efficiency of biological degradation of carbohydrates in the environment. Applied Biochemistry and Microbiology, 32(6), 579 - 585.

Kalyuzhnyi, C.V. (2004). High-intensity anaerobic biotechnologies for industrial wastewater treatment. Kataliz v promyshlennosti = Catalysis in Industry, 6, 42-50 (in Russ).

Weijma, J., Copini, C.F.M., Buisman, C.J.N., & Schultz, C.E. (2002). Biological recovery of metals, sulfur and water in the mining and metallurgical industry. In: Water recycling and resource recovery in industry : analysis, technologies and implementation. IWA: London.

Uslu, G., & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead and copper ions onto Pseudomonas putida. Effect of temperature. Journal of Hazardous Materials, 135, 87 - 93. https://doi.org/10.1016/j.jhazmat.2005.11.029

Gadd, G.M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46, 834 - 840.

He, J., & Chen, J.P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67 - 78. https://doi.org/10.1016/j.biortech.2014.01.068

Tunali, A.A. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115, 203 - 211. https://doi.org/10.1016/j.cej.2005.09.023

Naz, T., Khan, M., Ahmed, I., Rehman, S., Rha, E., Malook, I., & Jamil, M. (2016). Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicology and Industrial Health, 32, 1619 - 1627. https://doi.org/10.1177/0748233715569900

Dursun, A.Y., Uslu, G., Cuci, Y., & Aksu, Z. (2003). Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochemistry, 38, 1647 - 1651. https://doi.org/10.1016/S0032-9592(02)00075-4

Cabuk, A., Ilhan, S., Filik, C., & Caliskan, F. (2005). Pb2+ biosorption by pretreated fungal biomass. Turkish Journal of Biology, 29, 23 - 28.

Say, R., Yimaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science Technology, 21, 643 - 650.

Tan, T.W, Hu, B., & Su, H.J. (2004). Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum. Enzyme Microbiology and Technology, 35, 508 - 513. https://doi.org/10.1016/j.enzmictec.2004.08.035

Day, R., Denizli, A., & Arica, M.Y. (2001). Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology, 76, 67 - 70. https://doi.org/10.1016/S0960-8524(00)00071-7

Ozer, A., & Ozer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100, 219 - 229. https://doi.org/10.1016/S0304-3894(03)00109-2

Donmez, G., & Aksu, Z. (1999). The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochemistry, 35, 135 - 142. https://doi.org/10.1016/S0032-9592(99)00044-8

Volesky, В., May, H., & Holan, Z.R. (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol. Bioengineering, 41, 826 - 829. https://doi.org/10.1002/bit.260410809

Padmavathy, V., Vasudevan, P., & Dhingra, S.C. (2003). Biosorption of nickel(II) ions on baker’s yeast. Process Biochemistry, 38, 1389 - 1395. https://doi.org/10.1016/S0032-9592(02)00168-1

Solopov, M.V., Legenky,Yu.A., Bespalova, S.V., & Kholyavka, M.G. (2019). Biosorption of heavy metal ions by yeast cells modified with magnetite nanoparticles. Vestnik Voronezhskogo Gos. Universiteta = Proceedings of Voronezh State University. Series: Chemistry, biology, pharmacy, 1, 96 - 102 (in Russ.).

Aronbaev, S.D., Nasimov, A.M., Parpiev, N.A., & Aronbaev, D.M. (2011). Biosorption concentration of heavy metals by cell membranes of brewer's yeast Saccharomyces cerevisiae. Doklady Akademii Nauk Resp. Uzbekistan = Reports of the Academy of Sciences of the Republic of Uzbekistan, 3, 58 - 60 (in Russ.).

Nasimov, A.M., & Aronbaev, S.D. (2011). Biosorption of lead, cadmium and copper ions by sedimentary Saccharomyces cerevisiae yeasts. Ekologicheskiye systemy i pribory = Ecological systems and devices, 2, 3 - 7 (in Russ.).

Aronbaev, S.D. (2016). Study of heavy-metal ions sorption of by biosorbent based on yeast cell walls immobilized in a CA-alginate gel in static and dynamic modes. Universum: Chemistry and biology, 6(24). http://7universum.com/ru/nature/archive/item/3255

Pat. 2509734, Russian Federation, 2014.

Garanin, R.A. (2011). Biosorption method of heavy metals from industrial waste water using brewed yeast Saccharomyces cerevisiae (Ph.D. dissertation). Moscow: Institute for Biomedical Problems (in Russ.).

Gorobets, S.V., Gorobets, O.Yu., Goiko, I.Yu., Kasatkina, T.P., & Orlov, D. (2002). Acceleration of biosorption of copper ions from solution in magnetic field by yeast Saccharomyces cerevisiae. M.: Vysshaya shkola (in Russ.).

Ermolaeva, G.A. (2003). Preparation of beer using immobilized yeast. Pivo i napitki = Beer and Beverages, 4, 8 - 11 (in Russ.).

Nikolenko,Yu.M., Holomeidik, A.N., Zemnukhova, L.A., Ustinov, A.Yu., & Polyakova, N.V. (2012). Sorption of manganese ions with silica samples prepared from rice hull from aqueous solutions. Vestnik Dalnevostochnogo Otdeleniya Rossiiskoi Akademii Nauk = Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 5, 70 - 73 (in Russ.).

Lu, Y.M., & Wilkins, E. (1996). Heavy metal removal by caustic-treated yeast immobilized in alginate. J. Hazard. Mater., 49(2-3), 165 - 179. https://doi.org/10.1016/0304-3894(96)01754-2

Karpenko, D.V. (2005). Development of technology for producing biosorbents based on sedimentary brewer’s yeast and their application for production of beer, ethyl alcohol and other food products (Doctoral dissertation). M.: Moscow State University of Food Production (in Russ.).

Опубликован
2020-12-26
Как цитировать
Муравьева, А. Ю., Степачёва, А. А., & Молчанов, В. П. (2020). Возможность применения иммобилизованных дрожжей для биосорбции тяжелых металлов из водных сред. Химическая безопасность, 4(2), 131 - 146. https://doi.org/10.25514/CHS.2020.2.18009
Раздел
Технологии ликвидации источников химической опасности