Пиролиз пластиковых отходов. Обзор

  • Н. Ю. Ковалева Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, Москва, Россия
  • Е. Г. Раевская Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, Москва, Россия
  • А. В. Рощин Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, Москва, Россия
Ключевые слова: пластиковые отходы, термический пиролиз, каталитический пиролиз, катализаторы, продукты пиролиза, углеводороды, топливо

Аннотация

Проблема утилизации пластиковых отходов чрезвычайно актуальна и имеет глобальное значение, поскольку мировое производство пластмасс имеет устойчивую тенденцию к росту. В настоящее время в мире производится порядка 400 млн т различных видов пластмасс, и, по прогнозам, к 2050 г. всего около 12000 млн т накопленных пластиковых отходов будет выброшено на свалки или в окружающую среду. При этом полимеры практически не разлагаются и не гниют, что значительно усугубляет сложившуюся ситуацию. Перспективным методом утилизации этих отходов является пиролиз, выгодно отличающийся от известных способов утилизации и имеющий дополнительное преимущество с точки зрения возможности преобразования пластиковых отходов в различные виды топлива (кокс, жидкое углеводородное и газообразное топливо). В обзоре обобщены сведения о видах пиролиза полимеров, механизме процесса, образующихся продуктах, их составе и наиболее используемых катализаторах. Сделан акцент на сравнительный анализ двух основных типов пиролиза термического (некаталитического) и каталитического. Приведены характеристики, пути и перспективы использования продуктов пиролиза пластиковых отходов. Представлено краткое изложение существующих проблем и препятствий, влияющих на развитие различных способов получения топлива при пиролизе.

Литература

Plastics Europe, The Compelling Facts About Plastics: An Analysis of Plastic Production, Demand and Recovery for 2006 in Europe (PlasticsEurope, 2006).

PlasticsEurope, Plastics - The Facts 2016: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2016).

The Fiber Year, The Fiber Year 2017: World Survey on Textiles & Nonwovens (The Fiber Year GmbH, 2017).

Mills, J. (2011). Polyester & Cotton: Unequal Competitors. Tecnon OrbiChem presentation at Association Française Cotonnière (AFCOT), Deauville, France, 6 October 2011.

European Bioplastics, Bioplastics - Facts and Figures (European Bioplastics, 2017).

Geyer, R., Jambeck, J.R., & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. DOI: 10.1126/sciadv.1700782

American Chemistry Council (ACC), Resin Review: The Annual Statistical Report of the North American Plastics Industry (ACC, 2009).

Plastemart, “China leads in growth of polymers & plastic products;” www.plastemart.com/upload/Literature/chineseplasticandpolymergrowth.asp (accessed 25.03.2020).

Indian Petrochemical Industry: Country Paper from India, Asia Petrochemical Industry Conference, Seoul, South Korea, 7 to 8 May 2015 (Chemical and Petrochemicals Manufacturers’ Association India, 2016).

Mutha, N.H., Patel, M., & Premnath V. (2006). Plastics material flow analysis for India. Resour. Conserv. Recycl., 47, 222 - 244. https://doi.org/10.1016/j.resconrec.2005.09.003

American Chemistry Council (ACC), Resin Review: The Annual Statistical Report of the North American Plastics Industry (ACC, 2012).

American Chemistry Council (ACC), Resin Review: The Annual Statistical Report of the North American Plastics Industry (ACC, 2013).

Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China, J. Clean. Prod., 203, 287 - 300. https://doi.org/10.1016/j.jclepro.2018.08.139

Zhou, C., Fang, W., Xu, W., Cao, A., & Wang, R. (2014). Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J. Clean. Prod., 80, 80 - 86. https://doi.org/10.1016/j.jclepro.2014.05.083

Bai, B., Liu, Y., Wang, G., Zou, J., Zhang, H., Jin, H., & Li, X. (2019. Experimental investigation on gasification characteristics of plastic wastes in supercritical water. Renew. Energy, 135, 32 - 40. https://doi.org/10.1016/j.renene.2018.11.092

Lee, U., Chung, J.N., & Ingley, H.A. (2014). High-Temperature Steam Gasification of Municipal Solid Waste, Rubber, Plastic and Wood. Energy & Fuels, 28, 4573 - 4587. https://doi.org/10.1021/ef500713j

Onwudili, J.A., & Williams, P.T. (2016). Catalytic supercritical water gasification of plastics with supported RuO2: A potential solution to hydrocarbons–water pollution problem. Process Saf. Environ. Prot., 102, 140 - 149. https://doi.org/10.1016/J.PSEP.2016.02.009

Sanlisoy, A., & Carpinlioglu, M.O. (2017). A review on plasma gasification for solid waste disposal. Int. J. Hydrogen Energy, 42, 1361 - 1365. https://doi.org/10.1016/j.ijhydene.2016.06.008

Munir, M.T., Mardon, I., Al-Zuhair, S., Shawabkeh, A., & Saqib, N.U. (2019). Plasma gasification of municipal solid waste for waste-to-value processing. Renew. Sustain. Energy Rev., 116, 109461. https://doi.org/10.1016/j.rser.2019.109461

Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., & Aroua, M.K. (2018). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conf. Ser. Mater. Sci. Eng., 334(1). https://doi.org/10.1088/1757-899X/334/1/012001

Adrados, A., de Marco, I., Caballero, B.M., López, A., Laresgoiti, M.F., & Torres, A. (2012). Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag., 32, 826 - 832. https://doi.org/10.1016/j.wasman.2011.06.016

Thorat, P.V., Warulkar, S., & Sathone, H. (2013). Thermofuel - Pyrolysis of waste plastic to produce Liquid hydrocarbons. Adv. Polym. Sci. Technol. An Int. J., 3, 14 - 18.

Simón, D., Borreguero, A.M., de Lucas, A., & Rodríguez, J.F. (2014). Glycolysis of flexible polyurethane wastes containing polymeric polyols. Polym. Degrad. Stab., 109, 115 - 121. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.07.009

Sharma, R., & Bansal, P.P. (2016). Use of different forms of waste plastic in concrete – a review. J. Clean. Prod., 112, 473 - 482. https://doi.org/10.1016/J.JCLEPRO.2015.08.042

Campanelli, J.R., Kamal, M.R., & Cooper, D.G. (1993). A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J. Appl. Polym. Sci., 48, 443 - 451. https://doi.org/10.1002/app.1993.070480309

Pat. 5359061 A, USA, 1994.

Sadeghi, G.M.M., Shamsi, R., & Sayaf, M. (2011). From Aminolysis Product of PET Waste to Novel Biodegradable Polyurethanes. J. Polym. Environ., 19, 522 - 534. https://doi.org/10.1007/s10924-011-0283-7

Aznar, M.P., Caballero, M.A., Sancho, J.A., & Francés, E. (2006). Plastic waste elimination by cogasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process. Technol., 87, 409 - 420. https://doi.org/10.1016/J.FUPROC.2005.09.006

Abbas-Abadi, M.S., Haghighi, M.N. & Yeganeh, H. (2012). The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. Journal of Analytical and Applied Pyrolysis, 95, 198 -204. https://doi.org/10.1016/j.jaap.2012.02.007

Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346 - 368. https://doi.org/10.1016/j.rser.2017.01.142

Lopez, A., Marco, D. I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., & Torres, A. (2011). Pyrolysis of municipal plastic waste II: influence of raw material composition under catalytic conditions. Waste Management, 31, 1973 - 1983. https://doi.org/10.1016/j.wasman.2011.05.021

Chin, B.L.F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C., & Sulaiman, S.A. (2014). Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers. Manag., 87, 746 - 753. https://doi.org/10.1016/j.enconman.2014.07.043

Marcilla, A., Beltrán, M.I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. J. Anal. Appl. Pyrolysis, 86, 14 - 21. https://doi.org/10.1016/j.jaap.2009.03.004

Diaz Silvarrey, L.S., & Phan, A.N. (2016). Kinetic study of municipal plastic waste. Int. J. Hydrogen Energy, 41, 16352 - 16364. https://doi.org/10.1016/j.ijhydene.2016.05.202

Jana, R., Mukunda, P., & Nando, G. (2003). Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly(dimethyl siloxane) rubber. Polym. Degrad. Stab., 80, 75 - 82. https://doi.org/10.1016/s0141-3910(02)00385-3

Walendziewski, J. & Steininger, M. (2001). Thermal and catalytic conversion of waste polyolefines. Catal. Today, 65, 323 - 330. https://doi.org/10.1016/S0920-5861(00)00568-X

Encinar, J.M., & González, J.F. (2008). Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process. Technol., 89, 678 - 686. https://doi.org/10.1016/j.fuproc.2007.12.011

Onwudili, J.A., Insura, N., & Williams, P.T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrolysis, 86, 293 - 303. https://doi.org/10.1016/j.jaap.2009.07.008.

Murata, K., Sato, K., & Sakata, Y. (2004). Effect of pressure on thermal degradation of polyethylene. J. Anal. Appl. Pyrolysis, 71, 569 - 589. F.

Mastral, F., Esperanza, E., Garcı́a, P., & Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. J. Anal. Appl. Pyrolysis, 63, 1 - 15. https://doi.org/10.1016/S0165-2370(01)00137-1.

Ludlow-Palafox, C., & Chase, H.A. (2001). Microwave-Induced Pyrolysis of Plastic Wastes. Ind. Eng. Chem. Res., 40, 4749 - 4756. https://doi.org/10.1021/ie010202j

Mastral, F.J., Esperanza, E., Berrueco, C., Juste, M., & Ceamanos, J. (2003). Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air–nitrogen mixtures. J. Anal. Appl. Pyrolysis, 70, 1 - 17. https://doi.org/10.1016/S0165-2370(02)00068-2

Anene, A.F., Fredriksen, S.B., Sætre, K.A., & Tokheim, L.A. (2018). Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustain., 10, 1 - 12. https://doi.org/10.3390/su10113979

Obeid, F., Zeaiter, J., Al-Muhtaseb, A.H., & Bouhadir, K. (2014). Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts. Energy Convers. Manag., 85, 1 - 6. https://doi.org/10.1016/j.enconman.2014.05.075

Akubo, K., Nahil, M.A., & Williams, P.T. (2017). Aromatic fuel oils produced from the pyrolysiscatalysis of polyethylene plastic with metal-impregnated zeolite catalysts. J. Energy Inst., 92, 195 - 202. https://doi.org/10.1016/j.joei.2017.10.009

Park, K.B., Jeong, Y.S., Guzelciftci, B., & Kim, J.S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343 - 351. https://doi.org/10.1016/j.energy.2018.10.078

Jung, S.-H., Cho, M.-H., Kang, B.-S., & Kim, J.-S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol., 91, 277 - 284. https://doi.org/10.1016/j.fuproc.2009.10.009

Elordi, G., Olazar, M., Castaño, P., Artetxe, M., & Bilbao, J. (2012). Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. Ind. Eng. Chem. Res., 51, 14008 - 14017. https://doi.org/10.1021/ie3018274

Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R., & Bilbao, J. (2009). Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. J. Anal. Appl. Pyrolysis, 85, 359 - 365. https://doi.org/10.1016/j.jaap.2008.10.016

Aguado, R., Olazar, M., San José, M.J., Gaisán, B., & Bilbao, J. (2002). Wax Formation in the Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor. Energy & Fuels, 16, 1429 - 1437. https://doi.org/10.1021/ef020043w

Elordi, G., Olazar, M., Aguado, R., Lopez, G., Arabiourrutia, M., & Bilbao, J. (2007). Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis, 79, 450 - 455. https://doi.org/10.1016/j.jaap.2006.11.010

S.S. Lam, H.A. Chase, A Review on Waste to Energy Processes Using Microwave Pyrolysis, Energies. 5 (2012) 4209–4232. doi: https://doi.org/10.3390/en5104209.

A. Undri, L. Rosi, M. Frediani, P. Frediani, Efficient disposal of waste polyolefins through microwave assisted pyrolysis, Fuel. 116 (2014) 662–671. doi:https://doi.org/10.1016/j.fuel.2013.08.037.

A. Undri, S. Meini, L. Rosi, M. Frediani, P. Frediani, Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products, J. Anal. Appl. Pyrolysis. 103 (2013) 149–158. doi: https://doi.org/10.1016/j.jaap.2012.11.011.

H. Punkkinen, A. Oasmaa, J. Laatikainen-Luntama, M. Nieminen, J. Laine-Ylijoke, Thermal conversion of plastic-containing waste: A review, (2017) 1–77.

Park, S.S., Seo, D.K., Lee, S.H., Yu, T-U & Hwang, J. 2012. Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogrivimetric analysis reactor. Journal of Analytical and Applied Pyrolysis, 97, 29–38.

Aboulkas, A., El, Harfi, K. & El, Bouadili, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Conversion and Management, 51, 1363 -1369. https://doi.org/10.1016/j.enconman.2009.12.017

Shafferina, D. A. S., Faisal, A, Wan, M. A. W. D. & Mohamed, K. A., 2017. Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 148, 925–934. https://doi.org/10.1016/j.enconman.2017.06.046

Heikkinen, J.M., Ishaq, M., Khan, H., Gul, K. & Ahmad, W., 2013. Catalytic efficiency of some novel nanostructured heterogeneous solid catalysts in pyrolysis of HDPE. Polymer Degradation Stability, 98, 2512–2519.

Heikkinen, J.M., Hordijk, J.C., De, Jong, W. & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71, 883–900. https://doi.org/10.1016/j.jaap.2003.12.001

Jung, S-H., Cho, M-H., Kang, B-S. & Kim, J-S. 2010. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process Technology, 91, 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009

Zannikos, F., Kalligeros, S., Anastopoulos, G. & Lois, E., 2013. Converting biomass and waste plastic to solid fuel briquettes. Journal of Renewable Energy, 2013 (9), 1-10. https://doi.org/10.1155/2013/360368

Hong, S-J, Oh, S.C., Lee, H-P, Kim, H.T. & Yoo, K-O, 1999. A study on the Pyrolysis characteristics of poly (vinyl chloride). Journal of Korean Institute of Chemical Engineering, 37, 515–521.

Abnisa, F., Daud, W.M.A.W. & Sahu, J.N., 2014. Pyrolysis of mixtures of palm shell and polystyrene: an optional method to produce a high-grade of pyrolysis oil. Environmental Progress &. Sustainable Energy, 33, 1026 - 1033. https://doi.org/10.1002/ep.11850

Othman, N., Basri, N.E.A., Yunus, M.N.M. & Sidek, L.M. 2008. Determination of physical and chemical characteristics of electronic plastic waste (Ep-Waste) resin using proximate and ultimate analysis method. International Conference on Construction and Building Technology, 16, 169–180.

Kaminsky, W., Predel, M. & Sadiki, A. (2004). Feedstock recycling of polymers by pyrolysis in a fluidized bed. Polymer Degradation Stability, 85, 1045 - 1050. https://doi.org/10.1016/j.polymdegradstab.2003.05.002

Lee, K.H., 2012. Effects of the types of zeolite on catalytic upgrading of pyrolysis wax oil. Journal of Analytical Application and Pyrolysis, 94, 209–214. https://doi.org/10.1016/j.jaap.2011.12.015

İ. Kayacan, Ö.M. Doğan, Pyrolysis of Low and High Density Polyethylene. Part I: Non-isothermal Pyrolysis Kinetics, Energy Sources, Part A Recover. Util. Environ. Eff. 30 (2008) 385–391. doi: https://doi.org/10.1080/15567030701457079.

Lopez, A., Marco, D., Caballero. B.M., Laresgoiti, M.F. & Adrados, A. 2011c. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173, 62–71. ttps://doi.org/10.1016/j.cej.2011.07.037

Kim, S.S.& Kim, S. (2004). Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 98, 53–60. https://doi.org/10.1016/S1385-8947(03)00184-0

Miskolczi, N., Angyal, A., Bartha, L. & Valkai, I., 2009. Fuel by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90, 1032–1040.

Guoxun, Yan, Xiaodong, Jing, Hao, Wen & Shuguang Xiang. 2015. Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semi-batch Reactor under Atmospheric Pressure. Energy Fuels, 2, 2289−2298.

Jacyra, G.F., Claudinei, Fernandes, D. M., Soraia, L. d. S. & Mônica, R. D. C. M., 2017. Production of light hydrocarbons from pyrolysis of heavy gas oil and high density polyethylene using pillared clays as catalysts. doi:10.1016/j.jaap.2017.06.023.

Lin, Y.H., Sharratt, P.N., Garforth, A.A. & Dwyer, J., 1998. Catalytic Conversion of Polyolefins to Chemicals and Fuels over Various Cracking Catalysts. Energy Fuels, 12, 767-774.

A. Marcilla, M. del R. Hernandez, A.N. Garcıa, Study of the polymer–catalyst contact effectivity and the heating rate influence on the HDPE pyrolysis, J. Anal. Appl. Pyrolysis. 79 (2007) 424–432. doi: https://doi.org/10.1016/J.JAAP.2006.10.017.

P.J. Donaj, W. Kaminsky, F. Buzeto, W. Yanga, Pyrolysis of polyolefins for increasing the yield of monomers’ recovery, Waste Manag. 32 (2012) 840–846. https://doi.org/doi:10.1016/J.WASMAN.2011.10.009.

W. Kaminsky, I.-J. Nuñez Zorriqueta, Catalytical and thermal pyrolysis of polyolefins, J. Anal. Appl. Pyrolysis. 79 (2007) 368–374. doi: https://doi.org/10.1016/J.JAAP.2006.11.005.

S.R. Ivanova, E.F. Gumerova, K.S. Minsker, G.E. Zaikov, A.A. Berlin, Selective catalytic degradation of polyolefins, Prog. Polym. Sci. 15 (1990) 193–215. https://doi.org/10.1016/0079-6700(90)90028-Y

A.K. Panda, R.K. Singh, Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene, J. Fuel Chem. Technol. 39 (2011) 198–202. doi: https://doi.org/10.1016/S1872-5813(11)60017-0.

D. Almeida, M. de F. Marque, Thermal and Catalytic Pyrolysis of Polyethylene Plastic Waste in Semi, Polimeros. 26 (2015) 1–8. http://dx.doi.org/10.1590/0104-1428.2100

Z. Chlup, M. Černý, A. Strachota, Z. Sucharda, M. Halasová, I. Dlouhý, Influence of pyrolysis temperature on fracture response in SiOC based composites reinforced by basalt woven fabric, J. Eur. Ceram. Soc. 34 (2014) 3389–3398. doi:10.1016/j.jeurceramsoc.2014.03.003.

Achilias, D.S., Roupakia, C., Megalokonomos, P., Lappas, A.A. & Antonakou, E. V, 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149, 536-542. https://doi.org/10.1016/j.jhazmat.2007.06.076

Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, Cheng, S., Alimuddin, Z. & Yoshikawa, K. (2014). Fuel oil production from Municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Process, 47, 180–188. https://doi.org/10.1016/j.egypro.2014.01.212

Lopez, A., Marco, I.D., Caballero, B.M., Laresgoiti, M.F., Adrados, A. & Aranzabal, A., (2011). Catalytic pyrolysis of plastic wastes with two different types of catalytic: ZSM-5 zeolite and Red Mud. Applied Catalysis B: Environment, 104, 211–219. https://doi.org/10.1016/j.apcatb.2011.03.030

Adnan, Shah, J., Jan, M.R., 2014. Polystyrene degradation studies using Cu supported catalysts. Journal of Analytical Application and Pyrolysis, 109, 196–204. https://doi.org/10.1016/j.jaap.2014.06.013

Sriningsih, W., Saerodji, M..G, Trisunaryanti, W., Triyono, Armunanto, R. & Falah, II., (2014). Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environmental Science, 20, 215–224. https://doi.org/10.1016/j.proenv.2014.03.028

Ojha, D.K., & Vinu, R. (2015). Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. Journal of Analytical Application and Pyrolysis, 113, 349–359. https://doi.org/10.1016/j.jaap.2015.02.024

Sarker, M., Kabir, A., Rashid, M.M., Molla, M., & Mohammad, A.S.M.D. (2011). Waste polyethylene terephthalate (PETE-1) conversion into liquid fuel. Journals of Fundamentals of Renewable Energy and Application, 1, 5.

Sarker, M. & Rashid, M.M., 2013. Waste plastics mixture of polystyrene and polypropylene into light grade fuel using Fe2O3 catalyst. International Journal Renewable Energy Technology Research, 2(1), 17–28.

A. Lewandowska, S. Monteverdi, M. Bettahar, M. Ziolek, MCM-41 mesoporous molecular sieves supported nickel—physico-chemical properties and catalytic activity in hydrogenation of benzene, J. Mol. Catal. A Chem. 188 (2002) 85–95. doi:10.1016/S1381-1169(02)00339-4.

B. Valle, A.G.G. Gayubo, A.T.A.T.A.T. Aguayo, M. Olazar, J. Bilbao, Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst, Energy and Fuels. 24 (2010) 2060–2070. doi: https://doi.org/10.1021/ef901231j.

Q. Zhou, Y.Z. Wang, C. Tang, Y.H. Zhang, Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE, Polym. Degrad. Stab. 80 (2003) 23–30. doi: https://doi.org/10.1016/S0141-3910(02)00378-6.

J. Nishino, M. Itoh, H. Fujiyoshi, Y. Uemichi, Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5, Fuel. 87 (2008) 3681–3686. doi:https://doi.org/10.1016/j.fuel.2008.06.022.

N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A Gen. 398 (2011) 1–17. doi: https://doi.org/10.1016/j.apcata.2011.03.009.

C. Ma, J. Yu, Q. Yan, Z. Song, K. Wang, B. Wang, L. Sun, Pyrolysis-catalytic upgrading of brominated high impact polystyrene over Fe and Ni modified catalysts: Influence of HZSM-5 and MCM-41 catalysts, Elsevier Ltd, 2017. https://doi.org/10.1016/j.polymdegradstab.2017.09.005.

J.F. Mastral, C. Berrueco, M. Gea, J. Ceamanos, H. Breivik, B. Collett, V. Ventafridda, R. Cohen, D. Gallacher, Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite, Polym. Degrad. Stab. 91 (2006) 3330–3338. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2006.06.009.

D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, J.M.R. D.P. Serrano, J. Aguado, J.M. Escola, Influence of nanocrystalline HZSM-5 external surface on the catalytic cracking of polyolefins, J. Anal. Appl. Pyrolysis. 74 (2005) 353–360.: https://doi.org/10.1016/J.JAAP.2004.11.037.

G. Manos, I.Y. Yusof, N.H. Gangas, N. Papayannakos, Tertiary recycling of polyethylene to hydrocarbon fuel by catalytic cracking over aluminum pillared clays, Energy and Fuels. 16 (2002) 485–489. doi:10.1021/ef0102364.

A. Dawood, K. Miura, Pyrolysis kinetics of g-irradiated polypropylene, Polymer Degradation and Stability 73 (2001) 347–354.

R. Bagri, P.T. Williams, Catalytic pyrolysis of polyethylene, Journal of Analytical and Applied Pyrolysis 63 (2002) 29–41.

C. Jia, S. Rohani, A. Jutan, FCC unit modeling, identification and model predictive control, a simulation study, Chemical Engineering and Processing 42, 311 - 325. https://doi.org/10.1016/S0255-2701(02)00055-7

Jigisha Parikha, S.A. Channiwalab, G.K. Ghosal. A correlation for calculating HHV from proximate analysis of solid fuels Fuel 84 (2005) 487–494. doi: https://doi.org/10.1016/j.fuel.2004.10.010.

W.J. Hall, P.T. Williams, Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts, Journal of Analytical and Applied Pyrolysis 81 (2008) 139–147.

Carniti, P., & Gervasini, A. (2001). Thermogravimetric study of the kinetics of degradation of polypropylene with solid catalysts. Thermochimica Acta, 379, 51 - 58. https://doi.org/10.1016/S0040-6031(01)00601-3

W. Kaminsky, B. Schlesselmann, C.M. Simon, (1996). Thermal degradation of mixed plastic waste to aromatics and gas, Polymer Degradation and Stability 53 (1996) 189–197. https://doi.org/10.1016/0141-3910(96)00087-0

A.G. Buekens, H. Huang, Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes, Resources, Conservation and Recycling 23 (1998) 163–181.

K. Liu,W.-P. Pan, J.T. Riley, A study of chlorine behavior in a simulated fluidized bed combustion system, Fuel 79 (2000) 1115–1124. https://doi.org/10.1016/S0016-2361(99)00247-1

Karagoz, S., Karayildirimb, T., Ucara, S., Yukselc, M. &Yanik, J. (2003). Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalysts, Fuel 82 (2003)

–423. https://doi.org/10.1016/S0016-2361(02)00250-8

N. Lingaiah, Md.A. Uddin, A. Muto, T. Imai, Y. Sakata, Removal of organic chlorine compounds by catalytic dehydrochlorination for the refinement of municipal waste plastic derived oil, Fuel 80 (2001) 1901–1905.

Z. Gao, I. Amasaki, M. Nakada, A thermogravimetric study on thermal degradation of polyethylene, Journal of Analytical and Applied Pyrolysis 67 (2003) 1–9. https://doi.org/10.1016/S0165-2370(02)00010-4

Park, J.J., Park, J.W., Park, J. & Kim, D.C. (2002). Characteristics of LDPE pyrolysis. Korean Journal of Chemical Engineering, 19 (4), 658–662. https://doi.org/10.1007/BF02699313

Hwang, E.Y., Kim, J.R., Choi, J.K., Woo, H.C. & Park, D.W., 2002. Performance of acid treated natural zeolites in catalytic degradation of polypropylene. Journal of Analytical Application and Pyrolysis, 62 (2), 351–364.

Bagri, R. & Williams, P.T. 2002a. Catalytic pyrolysis of polyethylene. Journal of Analytical Application and Pyrolysis, 63, 29–41.

Rehaz, M., Nizami, A.S., Taylan, O., Al-Sasi, B.O & Demirbas, A. (2016). Determination of wax content in crude oil. Petroleum Science & Technology, 34 (9), 799–804. https://doi.org/10.1080/10916466.2016.1169287

Ding, W.B., Liang, J. & Anderson, L. 1997. Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Processing Technology, 51 (1–2), 47–62.

Kabir, G. & Hameed, B.H., 2017. Recent progress on catalytic pyrolysis of lingo cellulosic biomass to high grade bio-oil and bio-chemicals. Renewable & Sustainable Energy Review. https://doi.org/10.1016/j.rser.2016.12.001.

I.M. Gandidi, M.D. Susila, A. Mustofa, N.A. Pambudi, Thermal-catalytic cracking of real MSW into bio-crude oil, J. Energy Inst. 91 (2018) 304-310, https://doi.org/10.1016/j.joei.2016.11.005.

A. Lopez, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, Pyrolysis of municipal plastic wastes: influence of raw material composition, Waste Manag. 30 (2010) 620-627, https://doi.org/10.1016/j.wasman.2009.10.014.

E.D. Owen, Chemical Aspects of PVC Stabilisation, Degradation and Stabilisation of PVC, 1984, pp. 197-252, https://doi.org/10.1007/978-94-009-5618-6_5.

J. Leadbitter, PVC and sustainability, Prog. Polym. Sci. 27 (2002) 2197-2226, https://doi.org/10.1016/s0079-6700(02)00038-2.

W.H. Starnes, Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride), Prog. Polym. Sci. 27 (2002) 2133e2170, https://doi.org/10.1016/s0079-6700(02)00063-1.

H. Bockhorn, A. Hornung, U. Hornung, P. Jakobstr€oer, M. Kraus, Dehydrochlorination of plastic mixtures, J. Anal. Appl. Pyrol. 49 (1999) 97-106, https://doi.org/10.1016/s0165-2370(98)00124-7.

M. Grabda, S. Oleszek, E. Shibata, T. Nakamura, Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA, J. Hazard Mater. 278 (2014) 97-106, https://doi.org/10.1016/j.jhazmat.2014.05.084.

G. Yuan, D. Chen, L. Yin, Z. Wang, L. Zhao, J.Y. Wang, High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gaseliquid fluidized bed reactor, Waste Manag. 34 (2014) 1045e1050, https://doi.org/10.1016/j.wasman.2013.08.021.

Home: PlasticsEurope, Building and Construction, PlasticsEurope, 25 May 2017. www.plasticseurope.org/pdf.

Q. Cao, G. Yuan, L. Yin, D. Chen, P. He, H. Wang, Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: influence of PVC content and heating rate, Waste Manag. 58 (2016) 241-249, https://doi.org/10.1016/j.wasman.2016.08.031.

S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Current state and future prospects of plastic waste as source of fuel: a review, Renew. Sustain. Energy Rev. 50 (2015) 1167-1180, https://doi.org/10.1016/j.rser.2015.04.063.

A. Lopez, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, Dechlorination of fuels in pyrolysis of PVC containing plastic wastes, Fuel Process. Technol. 92 (2011) 253-260, https://doi.org/10.1016/j.fuproc.2010.05.008.

D. Czajczyńska, T. Nannou, L. Anguilano, R. Krzyźyńska, H. Ghazal, N. Spencer, H. Jouhara, Potentials of pyrolysis processes in the waste management sector, Energy Procedia 123 (2017) 387-394. https://doi.org/10.1016/j.egypro.2017.07.275

M.F. Ali, M.N. Siddiqui, Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue, J. Anal. Appl. Pyrol. 74 (2005) 282-289, https://doi.org/10.1016/j.jaap.2004.12.010.

M. Blazsó, E. Jakab, Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly(vinyl chloride), J. Anal. Appl. Pyrol. 49 (1999) 125-143, https://doi.org/10.1016/s0165-2370(98)00123-5.

H. Kuramochi, D. Nakajima, S. Goto, K. Sugita,W.Wu, K. Kawamoto, HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction, Fuel 87 (2008) 3155-3157, https://doi.org/10.1016/j.fuel.2008.03.021.

H. Bockhorn, J. Hentschel, A. Hornung, U. Hornung, Environmental engineering: stepwise pyrolysis of plastic waste, Chem. Eng. Sci. 54 (1999) 3043-3051. https://doi.org/10.1016/s0009-2509(98)00385-6.

S. Uçar, A.R. Özkan, S. Karagöz, Co-pyrolysis of waste polyolefins with waste motor oil, J. Anal. Appl. Pyrol. 119 (2016) 233-241, https://doi.org/10.1016/j.jaap.2016.01.013.

C. Santella, L. Cafiero, D. De Angelis, F. La Marca, R. Tuffi, S.V. Ciprioti, Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Manag., 54, 143 - 152, https://doi.org/10.1016/j.wasman.2016.05.005.

B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energy Inst. 90 (2017) 825-837, https://doi.org/10.1016/j.joei.2016.09.001.

S.M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, A review on thermal and catalytic pyrolysis of plastic solid waste (PSW), J. Environ. Manag. 197 (2017) 177-198, https://doi.org/10.1016/j.jenvman.2017.03.084.

P. Laurent, C. Kestemont, C. Braekman-Danheux, A. Fontana, Municipal waste pyrolysis (1). The behaviour of chlorine with cellulose and lignin, Erdol ErdGas Kohle 116 (2000) 89-92.

Z. Yao, X. Ma, A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis, Energy 141 (2017) 1156-1165, https://doi.org/10.1016/j.energy.2017.10.008.

A. Lopez-Urionabarrenechea, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, Upgrading of chlorinated oils coming from pyrolysis of plastic waste, Fuel Process. Technol. 137 (2015) 229-239, https://doi.org/10.1016/j.fuproc.2015.04.015.

A. Veksha, A. Giannis, W.-D. Oh, V.W.-C. Chang, G. Lisak, Upgrading of non-condensable pyrolysis gas from mixed plastics through catalytic decomposition and dechlorination, Fuel Process. Technol. 170 (2018) 13-20, https://doi.org/10.1016/j.fuproc.2017.10.019.

A. Fontana, Ph. Laurent, C.G. Jung, J. Gehrmann, M. Beckmann, Municipal waste pyrolysis (2): chlorine capture by addition of calcium and sodium-based sorbents, Erdol ErdGas Kohle 117 (2001) 362-365.

S.D.A. Sharuddin, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, A review on pyrolysis of plastic wastes, Energy Convers. Manag. 115 (2016) 308-326, https://doi.org/10.1016/j.enconman.2016.02.037.

R. Miandad, M.A. Barakat, A.S. Aburiazaiza, M. Rehan, A.S. Nizami, Catalytic pyrolysis of plastic waste: a review, Process Saf. Environ. Protect. 102 (2016) 822-838, https://doi.org/10.1016/j.psep.2016.06.022.

B. Kunwar, H.N. Cheng, S. R Chandrashekaran, B. K Sharma, Plastics to fuel: a review, Renew. Sustain. Energy Rev. 54 (2016) 421-428, https://doi.org/10.1016/j.rser.2015.10.015.

K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag. 69 (2017) 24e58, https://doi.org/10.1016/j.wasman.2017.07.044.

F. Ates, U.T. Un, Production of char from hornbeam sawdust and its performance evaluation in the dye removal, J. Anal. Appl. Pyrol. 103 (2013) 159-166. https://doi.org/10.1016/j.jaap.2013.01.021

D.K. Ratnasari, M.A. Nahil, P.T. Williams, Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils, J. Anal. Appl. Pyrol. 124 (2017) 631e637, https://doi.org/10.1016/j.jaap.2016.12.027.

S. Jitkarnka, B. Chusaksri, P. Supaphol, R. Magaraphan (2007). Influences of thermal aging on properties and pyrolysis products of tire tread compound, J. Anal. Appl. Pyrol., 80, 269e276. https://doi.org/10.1016/j.jaap.2006.07.008

J.V. Ortega, A.M. Renehan, M.W. Liberatore, A.M. Herring, Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks, J. Anal. Appl. Pyrol. 91 (2011) 190e198. https://doi.org/10.1016/j.jaap.2011.02.007.

L. Jampolski, M.T. Morgano, H. Seifert, T. Kolb, N. Willenbacher, Flow behavior and aging of pyrolysis oils from different feedstocks, Energy Fuel. 31 (2017) 5165e5173, https://doi.org/10.1021/acs.energyfuels.7b00196.

B. Fekhar, L. Gombor, N. Miskolczi Pyrolysis of chlorine contaminated municipal plastic waste: In-situ upgrading of pyrolysis oils by Ni/ZSM-5, Ni/SAPO-11, red mud and Ca(OH)2 containing catalysts / Journal of the Energy Institute 92 (2019) 1270-1283. https://doi.org/10.1016/j.joei.2018.10.007

Sarpal, A.S., Kapur, G.S., Mukherjee, S. & Tiwari, A., 2001. Analyses of cracked gasoline by H-1 NMR spectroscopy. Part II Fuel, 80(4), 521-528.

Horvat, N. & Ng, F.T.T. (1999). Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel, 78(4), 459 - 470. https://doi.org/10.1016/S0016-2361(98)00158-6

Ballice, L., 2002. Classification of volatile products evolved during temperature programmed copyrolysis of low-density polyethylene (LDPE) with polypropylene (PP). Fuel, 81(9), 1233–1240.

Kunwar, B., Cheng, H. N., Chandrashekaran, S.R. & Sharma, B.K. (2016). Plastics to fuel. A review. Renewable & Sustainable Energy Reviews, 54, 421 - 428. https://doi.org/10.1016/j.rser.2015.10.015

Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W. & Aroua, M.K., 2016. A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. doi.org/10.1016/j.enconman.2016.02.037.

Li, H., Xia, S. & Ma, P., 2016. Upgrading fast pyrolysis oil: Solventeanti-solvent extraction and blending with diesel. Energy Conversion and Management, 110, 378-385. https://doi.org/10.1016/j.enconman.2015.11.043

Frigo, S., Seggiani, M., Puccini, M. & Vitolo, S. (2014). Liquid fuel production from waste tyre pyrolysis and its utilisation in a diesel engine. Fuel, 116, 399 - 408. https://doi.org/10.1016/j.fuel.2013.08.044

Lee, S., Yoshida, K. & Yoshikawa, K. ( 2015). Application of waste plastic pyrolysis oil in a direct injection diesel engine: For small scale non-grid electrification. Energy and Environmental Research, 5(1), 18 - 32. DOI: 10.5539/eer.v5n1p18

Nileshkumar, K.D., Patel, T.M., Jani, R.J. & Rathod, G.P. (2015). Effect of blend ratio of plastic pyrolysis oil and diesel fuel on the performance of single cylinder CI engine. International Journal of Science and Technology and Engineering, 1, 195 - 203.

Cleetus, C., Thomas, S. & Varghese, S. (2013). Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. Journal of Energy, 2013, 608797. https://doi.org/10.1155/2013/608797

Mukherjee, M.K. & Thamotharan, P.C. (2014). Performance and emission test of several blends of waste plastic oil with diesel and ethanol on four stroke twin cylinder diesel engine. IOSR Journal of Mechanical and Civil Engineering, 11, 2278 - 1684.

Thahir, R., Altway, A., Juiiastuti, S.R., & Susianto (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5, 70 - 77. https://doi.org/10.1016/j.egyr.2018.11.004

Rehan, M., Nizami, A.S., Shahzad, K., Ouda, O.K.M., Ismail, I.M.I., Almeelbi, T., Iqbal, T., & Demirbas, A. (2016). Pyrolytic liquid fuel: a source of renewable energy in Makkah. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), 2598 - 2603. https://doi.org/10.1080/15567036.2016.1153753

Adnan, Shah, J. & Jan, M.R. (2015). Effect of Polyethylene Terephthalate on the catalytic pyrolysis of Polystyrene: Investigation of the liquid products. Journal of the Taiwan Institute of Chemical Engineers, 51, 96 - 102. https://doi.org/10.1016/j.jtice.2015.01.015

Wongkhorsub, C. & Chindaprasert. N. (2013). A comparison of the use of pyrolysis oils in diesel engine. Energy and Power Engineering, 5, 350 - 355. DOI: 10.4236/epe.2013.54B068

Supattra, B., Andrew, J.H. & Yuvarat, N. (2019). Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. Royal science of chemistry Advances, 9, 5844 - 5857. https://doi.org/10.1039/C8RA10058F

Ahmad, I., Khan, M.I., Khan, H., Ishaq, M., Tariq, R., & Gul, K. (2014). Pyrolysis Study of Polypropylene and Polyethylene into Premium Oil Products. International Journal of Green Energy, 12, 663 - 671. https://doi.org/10.1080/15435075.2014.880146

Rohit, K.S., Biswajit, R., Sadhukhan, A.K. & Gupta, P. (2019). Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: Product yield analysis and their characterization. Journal of the Energy Institute, 92, 1647 - 1657. https://doi.org//10.1016/j.joei.2019.01.009

Khan, M. Z. H., Sulatan, M., Al-Mamun, M.R., & Hasan, M.R. (2016). Pyrolytic waste plastic oil and its diesel blend: Fuel characterization. Journal of Public Health, 2016, 7869080. https://doi.org/10.1155/2016/7869080

Desai, S.B., & Galage, C.K. (2015). Production and analysis of pyrolysis oil from waste plastic in Kolhapur city. International Journal of Engineering Research and General Science, 3(1), 590 - 595.

Pramendra, G., & Hirala, P. (2018). Thermal and catalytic pyrolysis of plastic waste polypropylene for recovery of valuable petroleum range hydrocarbon. International Journal of Research in Science & Engineering. Chemcon Special Issue, 228 - 233.

Natacha, P., & Sommai, P-A. (2018). Prototype Co-Pyrolysis of Used Lubricant Oil and Mixed PlasticWaste to Produce a Diesel-Like Fuel. Energies, 11(11), 2973. https://doi.org/10.3390/en11112973

Ouda, O.K.M., Raza, S.A., Nizami, A.S., Rehan, M., Al-Waked, R., & Korres, N.E. (2016). Waste to energy potential: a case study of Saudi Arabia. Renewable &. Sustainable Energy Reviews, 61, 328 - 340. https://doi.org/10.1016/j.rser.2016.04.005

Опубликован
2020-06-28
Как цитировать
Ковалева, Н. Ю., Раевская, Е. Г., & Рощин, А. В. (2020). Пиролиз пластиковых отходов. Обзор. Химическая безопасность, 4(1), 48 - 79. https://doi.org/10.25514/CHS.2020.1.17004
Раздел
Утилизация и биодеградация отходов