Сравнительная оценка состава и свойств соединений родия с супрамолекулами
Аннотация
Представлены результаты исследований по сравнительной оценке влияния супрамолекул ‒ каликс[4]резорцинов и дибензо-18-краун-6, функционализированных различными фрагментами (гидроксиэтокси-, фосфорил-, амино-, нитрогруппами) на состав продуктов, которые образуются при их взаимодействии с акватрихлоридом родия (III) и диакватетраацетатом диродия (II) в органических средах. Установлено, что выделение и состав продуктов определяется свойствами органической среды. Показана взаимосвязь между исследованными функциональными свойствами комплексных соединений, такими как каталитическая, бактерицидная и антиоксидантная активность, и их составом и строением. Исследованные закономерности влияния растворителей на выделение термодинамически стабильных продуктов в твердую фазу в виде супрамолекулярных комплексов родия разнообразного состава и строения открывает широкие перспективы для управления процессами минимизации потерь родия в отходах химической промышленности, связанной с соединениями, участвующими в катализе и проводимых в неводных органических средах.
Литература
Takano, Sh., Kochi, T., Kakiuchi, F. (2016). Synthesis and Reactivity of Phosphine-Quinolinolato Rhodium Complexes: Intermediacy of Vinylidene and (Amino)carbene Complexes in the Catalytic Hydroamination of Terminal Alkynes. Organometal., 35(24), 4112–4125. https://doi.org/10.1021/acs.organomet.6b00853.
Farrell, N.P. (2015). Multi-Platinum Anticancer Agents. Substitution-Inert Compounds for Tumor Selectivity and New Targets. Chem. Soc. Rev., 44, 8773‒8785. https://doi.org/10.1039/c5cs00201j.
Palmer, A.M., Knoll, J.D., Turro, Cl. (2015) Photoinduced interactions of two dirhodium complexes with d(GTCGAC)2 probed by 2D NOESY. Dalton Trans., 44 (8), 3640–3646. https://doi.org/10.1039/C4DT03119A.
Chepaikin, E.G. (2011). Homogeneous catalysis in the oxidative functionalization of alkanes in protic media. Rus. Chem. Rev., 80 (4), 384‒416 (in Russ.) https://doi.org/10.1070/RC2011v080n04ABEH004131.
Knyazeva, I.R, Burilov, A.R., Pudovik, M.A., Habicher, W.D. (2013). Phosphorus-containing macrocyclic compounds: synthesis and properties. Russ. Chem. Rev., 82(2), 150–186 (in Russ.). https://doi.org/10.1070/RC2013v082n02ABEH004296.
Jain, V.К., Kanaiy, P.H. (2011). Chemistry of calyx[4]resorcinarenes. Russ. Chem. Rev., 80(1), 77–106 (in Russ.). https://doi.org/10.1070/RC2011v080n01ABEH004127.
Yakshin, V.V., Vilkova, О.М., Pluzhnik-Gladyr, S.М., Кotlyar, S.А (2010). Crown Ethers in Extraction and Sorption. I. Bromoderivatives of Benzo- and Dibenzocrown Ethers in the Sorption Processes of Elements from Acidic Water Solutions. Macroheterocycles, 3(2-3), 114‒120.
Gromov, S.P., Dmitrieva, S.N., Churakova, M.V. (2005). Phenylaza and benzoazacrown-compounds with a nitrogen atom conjugated with a benzene ring. Rus. Chem. Rev., 74(5), 503‒532 (in Russ.). https://doi.org/10.1070/RC2005v074n05ABEH001163.
Antipin, I.S., Alfimov, M.V., Arslanov, V.V., Burilov, V.A., Vatsadze, S.Z., Voloshin, Ya.Z., Volcho, K.P., Gorbatchuk, V.V., Gorbunova, Yu.G., Gromov, S. P., Dudkin, S.V., Zaitsev, S.Yu., Zakharova, L.Ya., Ziganshin, M A., Zolotukhina, A.V., Kalinina, M.A., Karakhanov, Ed. A. Kashapov, R.R., Koifman, O.I., Konovalov, A.I., Korenev, V.S., Maksimov, A.L., Mamardashvili, N.Zh., Mamardashvili, G.M., Martynov, A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov, A.S., Padnya, P.L., Potapov, A.S., Selektor, S.L., Sokolov, M.N., Solovieva, S.E., Stoikov I.I., Stuzhin, P.A., Suslov, E.V., Ushakov, E.N., Fedin, V.P., Fedorenko, S.V., Fedorova, O.A., Fedorov, Yu.V., Chvalun, S.N., Tsivadze, A.Yu., Shtykov, S.N., Shurpik, D.N., Shcherbina, M.A., Yakimova, L.S. (2021). Functional supramolecular systems: design and applications. Russ. Chem. Rev., 90(8), 895–1107 (in Russ.). https://doi.org/10.1070/RCR5011.
Bauder, C., Sémeril, D. (2019). Styrene hydroformylation with cavity-shaped ligands. J. Eur. Inorg. Chem., 2019 (47), 4951–4965. https://doi.org/10.1002/ejic.201900974.
Chavagnan, T. Bauder, C., Semeril, D., Matt, D., Toupet, L. (2017). Substrate-Selective Olefin Hydrogenation with a Cavitand-Based Bis(N-anisyl iminophosphorane). Eur. J. Org. Chem., 2017 (1), 70‒76. https://doi.org/10.1002/ejoc.201601125.
Garcia-Simon, C., Gramage-Doria, R., Raoufmoghaddam, S., Parella, T., Costas, M., Ribas, X., Reek, J. N. H. (2015). Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage. J. Am. Chem. Soc., 137(7), 2680–2687. https://doi.org/10.1021/ja512637k.
Glushko, V.N., Blokhina, L.I., Zhila, M.Yu. (2019). Synthesis of macroheterocycic compounds and their analogues derived from crown ethers and theirapplication for selective extraction for radionuclidewaste. Chemical Safety Science, 3(1), 49–55 (in Russ.). https://doi.org/10.25514/CHS.2019.1.15003.
Torgov, V.G., Kostin, G.A., Mashukov, Korda, T.M., Drapailo, A.B., Kas’yan, O.V., Kalchenko, V.I. (2008). Palladium(II) extraction by sulfur-containing calix[4,6]arenes from hydrochloric acid solutions. Russ. J. Inorg. Chem., 53, 1809–1815. https://doi.org/10.1134/S0036023608110235.
Guseva, E.V., Fesik, E.V., Potapova, A.V. (2022). Catalytic Activity of Supramolecular Dimethylamine- and Diphenylphosphine-Containing RhIII Peroxodichloro-Complexes on the Example of Studying the Kinetics of Homogeneous Dehydrogenation of Formic Acid. Macroheterocycles, 15(3), 195‒203. https://doi.org/10.6060/mhc224591g.
Guseva, E.V., Sokolova, A. V., Saifutdinov, A. M., Naumova, A.A., Polovnyak, V. K. (2012). Kinetics of Homogeneous Dehydrogenation of Formic Acid in the Presence of Supramolecular Rhodium(III) Complex with P-Functionalized Calix[4]resorcine. Rus. J. Gen. Chem., 82(5), 827–834. https://doi.org/10.1134/S1070363212050040.
Brodsky, B.H., Du Bois, J. (2006). Entrapment of a dirhodium tetracarboxylate unit inside the aromaticbowl of a calix[4]arene: Unique catalysts for C-H amination? Chem. Commun., 4715‒4717. https://doi.org/10.10391b611280c.
Guseva, E.V., Davletshina, L.F., Idiyatullova, Z.Z. (2019, March). Study of the 2-hydroxy-ethoxy derivative of calix[4]resorcinol in reactions with RhCl3∙nH2O, H2PtCl6∙nH2O and PtCl4. Trends in the development of science and education, part 6(48), 63‒67 (in Russ.). https://doi.org/10.18411/lj-03-2019-130.
Guseva, E.V., Buslaeva, T.M., Polovnyak, V. K. (2016). Rhodium Complexation with Phosphoryl-Containing Calix[4]resorcine. Rus. J. Inorg. Chem., 61(11), 1436–1444. https://doi.org/10.1134/S0036023616110085.
Guseva, E.V., Buslaeva, T.M., Grishin, E.I. (2016). Complexation of dirhodium(II) with N-functionalized calix[4]resorcinarenes. Rus. Chem. Bull., 65, 2485‒2493. https://doi.org/10.1007/s11172-016-1611-9.
Guseva, E.V., Potapova, A.V. (2013). Interaction of P-functionalized calix[4]resorcinol with salts of various 4d- and 5d-metals. Bull. Kazan Technological University, 16 (13), 21-27 (in Russ.).
Guseva, E.V., Naumova, A.A., Karimova, D.T., Sokolova, A.V., Gavrilova, E.L., Busygina, T.E. (2012). Reaction of Rhodium Trichloride and Dirhodium(II) Acetate with trans-4,4'-Bis(diethoxyphosphoryl)biphenyl-18-crown-6. Rus. J. Gen. Chem., 82(1), 1–8. https://doi.org/10.1134/S107036321201001X.
Guseva, E.V., Morozov, V.I., Zinkicheva, T.T., Voloshina, A.D., Grishin, E. I. (2012). Complexes of Rhodium(III) with N-Functionalized Calix[4]Resorcinolol. Rus. J. Gen. Chem. 82 (8), 1233–1243. https://doi.org/10.1134/S1070363212080014.
Guseva, E.V., Morozov, V.I., Gavrilova, E.L., Shatalova, N.I., Grishin, E.I. (2011). Interaction of Rhodium Trichloride with N-Functionalized Calix[4]resorcinol in Acetone. Rus. J. Gen. Chem., 81 (10), 2039–2044. https://doi.org/10.1134/S107036321110001X.
Guseva, E.V., Kasymova, E.M., Egorov, G.V., Kayupov, A.R., Khamatgalimov, A.R., Khasanshin, R. A., Burilov, A. R. (2010). Reaction of Rhodium Trichloride with Oxyethylated Calix[4]resorcinarene. Russian Journal of General Chemistry, 80(3), 478–484. https://doi.org/10.1134/S1070363210030199.
Guseva, E.V., Karimova, D.T., Morozov, V.I., Gavrilova, E.L., Naumova, A.A, Polovnyak, V.K., Krasil’nikova, E.A. (2010). Reaction of Rhodium Trichloride with P-Functionalized Calix[4]resorcinols in Various Media. Rus. J. Gen. Chem., 80(1), 47‒59. https://doi.org/10.1134/S1070363210010081.
Guseva, E.V., Karimova, D.T., Polovnyak, V.K., Egorov, G.V., Gavrilova, E.L., Shatalova, N.I., Morozov, V.I. (2009). Complexes of dirhodium(II) with calix[4]resorcinols functionalized at the lower and upper rim of the molecule with various N-containing fragments. Bull. Kazan Technological University, (5), 288‒295 (in Russ.).
Guseva, E.V., Gavrilova, E.L., Naumova, A.A, Morozov, V.I., Shatalova, N.I., Karimova, D.T., Polovnyak, V.K. (2008). Complexes of Dirhodium(II) Carboxylates with Calix[4]resorcinarenes Functionalized at the Upper and Lower Rim of the Molecule with P,N-containing Fragments. Rus. J. Gen. Chem., 78(12), 2308‒2316. https://doi.org/10.1134/S1070363208120049.
Guseva, E.V., Karimova, D.T. (2008). Complex Formation of Rhodium(II) Carboxylate with cis-Dinitrodibenzo-18-crown-6 and cis-Diaminodibenzo-18-crown-6 in Ethanol. Rus. J. Gen. Chem.,78 (1), 146‒147. https://doi.org/10.1134/S1070363208010258.
Naumova, A.A., Guseva, E.V., Gavrilova, E.L., Shatalova, N.I., Karimova, D. T., Krasilnikova E. A. (2007). Study of complex formation of rhodium trichloride with calix[4]resorcinols functionalized along the upper and lower rims with P,N – containing fragments. Bull. Kazan Technological University, (3-4), 32‒36 (in Russ.).
Lever, A.B. P. (1987). Inorganic Electronic spectroscopy: in 2 volumes. Amsterdam-Oxford-New York-Tokyo: Elsevier.
Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, P. B: Applications in Coordination, Organometallic and Bioinorganic Chemistry. New York: Wiley.
Konovalov, L.V. (1984). Spectral and structural study of metal-chlorine stretching vibrations in complex compounds of platinum metals (Os, Ir, Ru, Rh). Coordination chemistry, 10(10), 1401‒1406 (in Russ.).
Legzdins, P., Mitchell, R.W., Rempel, G.L. (1970). The protonation of Ruthenium and Rhodium – bridged carboxylates and their use as homogeneous hydrogenation catalysts for unsaturated substaces. J. Chem.Soc. A, (3), 3322–3326. https://doi.org/10.1039/J19700003322.
Kayupov, A.R., Kasymova, E.M., Burilov, A.R., Pudovik, M.A. New Polyethers on the Calix[4]resorcinarene Platform. Rus. J. Gen. Chem., 78(1), 364‒365. https://doi.org/10.1134/S1070363210020295.
HyperChem (Release 7.01 for Windows). Molecular Modeling System. (2002). Hypercube, Inc.
Gavrilova, E.L., Naumova, A.A., Burilov, A.R., Pudovik, M.A., Krasilnikova, E.A., Konovalov, A.I. (2007). Synthesis of calix[4]resorcinarenes with phosphorylaryl substituents at the lower rim of the molecule. Russ. Chem. Bull., 56, 2348–2350. https://doi.org/10.1007/s11172-007-0371-y.
Naumova, A.A., Gavrilova, E.L., Khodalova, K.O., Guseva, E.V., Krasil’nikova, E.A., Petrova, M.A. (2009). Synthesis of 4,4'-Bis(dialkoxyphosphoryl)biphenyl-18-crown-6. J. Rus. Gen. Chem.,79(8), 1762–1764. https://doi.org/10.1134/S1070363209080349.
Yatsimirsky, K.B., Kolchinsky, A.G., Pavlishchuk, V.V., Talanova, G.G. (1987). Synthesis of macrocyclic compounds. Kyiv: Nauk. Dumka, pp. 147‒197 (in Russ.).
Shatalova, N.I, Gavrilova, E.L., Sidorov, N.A., Burilov, A.R., Pudovik, M.A., Krasilnikova, E.A. Konovalov, A.I. (2009). Calix[4]resorcinols Functionalized with Amino Acid Residues Rus. J. Gen. Chem., 79 (7), 1494–1498. https://doi.org/10.1134/S1070363209070159.
Shatalova, N.I., Sidorov, N.A., Gavrilova, E.L., Krasilnikova, E.A. (2007). Synthesis of aminomethylated calix[4]resorcinols. Bull. Kazan Technological University, (3-4), 41‒43 (in Russ.).
Brown, D., Floyd, A., Sainsbury, M. (1992). Organic Spectroscopy. John Wiley & Sons, Ltd.
Potapov, V.M. (1988). Stereochemistry. Moscow: Chemistry (in Russ.).
Guseva, E.V., Idiyatullova, Z.Z., Davletshina, L.F. (2019). Study of the ligand properties of crown ethers (18-crown-6 and dibenzo-18-crown-6) upon interaction with RhCl3∙nH2O in aprotic and protic solvents. Trends in the development of science and education, part 6(48), 59‒62 (in Russ.). https://doi.org/10.18411/lj-03-2019-130.
Guseva, E.V., Sakhno, T.V., Kutlakhmetova, A.R., Fesik E.V. (2022). Evaluation of bactericidal and antioxidant properties of functionalized calix[4]resorcinols and of rhodium complexes based on them. Chemical Safety Science, 6(1), 106‒131 (in Russ.). https://doi.org/10.25514/CHS.2022.1.21007.
Hudson, R F. (1965). Structure and mechanism in organo-phosphorus chemistry. London‒New York: Academic Press.
Belyaev, A.V. Fedotov, M.A., Korsunsky, V.I., Venediktov, A.B., Khranenko, S.P. (1984). On the structure of polynuclear rhodium(III) chlorides. Coordination Chemistry, 10(7), 911‒918. (in Russ.).
Belyaev, A.B., Venediktov, A.B., Khranenko, S.P. (1983) On the nature of rhodium chlorides. Coordination Chemistry, 9(1), 120‒129 (in Russ.).
Shagidullin, R.R., Chernova, A.V. Vinogradova, V.S. (1984). Atlas of IR spectra of organophosphorus compounds. Moscow: Science (in Russ.).
Nifantiev, E.V., Vasyanina, L.K. (1987). 31P NMR spectroscopy. Moscow: Printing house Mosk. State Ped. Institute named after IN AND. Lenin (in Russ.).
Yanilkin, V.V., Ryzhkina, I.S., Nastapova, N.V., Pashirova, T.N., Babkina, Y.A., Burilov, A.R., Morozov, V.I., Konovalov, A.I. (2003). Single-electron oxidation and nucleophilicity of aminomethylated calix[4]resorcinarenes. Russ. Chem. Bull., 52, 1142‒1149. https://doi.org/10.1023/A:1024713408780.
Rotov, A.V., Zhilyaev, A.N. Baranovsky, I.B., Larin, G M. (1989). Effect of ligands on the electronic structure of β-diketonate complexes of RhII according to ESR data. J. Inorg. Chem., 34(7), 1899‒1901 (in Russ.).
Abakumov, G.A., Cherkasov, V.K., Bubnov, M.P. Abakumova, L.G., Zakharov, L.N., Fokin, G.K. (1999). New semiquinone-catecholate rhodium complex with 2,2′-dipyridyl. Russ. Chem. Bull.48 (9), 1762–1766. https://doi.org/10.1007/BF02494826.
Vrielinck, H., Sabbe, K., Callens, F., Matthys, P. (2001). Detection of charge compensating cation vacancies near Rh2+ complexes in AgCl and NaCl using Q-band ENDOR. Phys. Chem. Chem. Phys., 3 (9), 1709‒1716. https://doi.org/10.1039/b008244i.
Cotton, F.A., Murillo, C.A., Wolton R.A. (2005). Multiple Bonds Between Metal Atoms. New York: Springer Science and Business Media. P. 465‒567, P. 707–796.
Kawamura, T., Katayama H., Nishikawa, H., Yamabe, T. (1989). Ligand dependence of electronic configuration of the Rh-Rh bond in Rh25+ complexes as studied by electron spin resonance and electrochemistry. J. Am. Soc., 111 (21), 8156‒8160. https://doi.org/10.1021/ja00203a015.
Kawamura, T., Fukamachi, K., Soba, T., Hayashida, S., Yonezawa, T (1981). Electronic structure of Rh-Rh bond in Rh2(O2CR)4(PY3)2 by electron spin resonance study of their cation radicals. J. Am. Chem. Soc., 103 (2), 364‒369. https://doi.org/10.1021/ja00392a021.
Kadish, K.M., Phan, T.D., Giribabu, L., Caemelbecke, E.V., Bear, J.L. (2003). Substituent and isomer effects on structural, spectroscopic, and electrochemical properties of dirhodium(III, II) complexes containing four identical unsymmetrical bridging ligands. Inorg. Chem., 42(26), 8663‒8673. https://doi.org/10.1021/Ic034963L.
Sizova, O.V., Ivanova, N.V. (2006). Electronic structure and spectra of rhodium(II) tetracarboxylate complexes. Rus. J. Coord. Chem., 32(6), 444–450. https://doi.org/10.1134/S107032840606008X.
Bradley, M.P., Bursten, E.B., Turro, C. (2001). Excited-State Properties of Rh2(O2CCH3)4(L)2 (L = CH3OH, THF, PPh3, Py). Inorg. Chem., 40(6), 1376‒1379. https://doi.org/10.1021/ic0009573.
Belsky, V.K., Bulychev, B.M. (1999). Structural and chemical aspects of complex formation in the metal halide–macrocyclic polyether systems. Rus. Chem. Rev., 68(2), 136–153. https://doi.org/10.1070/RC1999v068n02ABEH000459.
Barannikov, V.P., Guseinov, S.S., V’ugin, A.I. (2002). Molecular complexes of crown ethers in crystal and solutions. Rus. J. Coord. Chem., 28(3), 153–162. https://doi.org/10.1023/A:1014729400394.
Steinborn, D., Gravenhorst, O., Hartung, H., Baumeister, U. (1997). Synthesis, Reactivity, and Structure of [H13O6][PtCl5(H4O2)]∙2(18CR6): a crown ether complex of pentachloroaquaplatinic acid with an [H13O6]+ cation in cage of three crown ether molecules. Inorg. Chem. 36(10), 2195–2199. https://doi.org/10.1021/ic9614780.
Guseva, E.V. Buslaeva, T.M., Grishin, E.I., Zinkicheva, T.T. (2015). Influence of Solvents on Protolytic and Aggregation Properties of Aminomethylated Calix[4]resorcine. Macroheterocycles, 8 (4), 415–423. https://doi.org/10.6060/mhc151081g.
Guseva, E.V., Grishin, E.I., Grishin, P.V. (2015). Aggregation properties of N-functionalized calix[4]resorcinol in ethanol. Bulletin of the Technological University, 18 (20), 36-37 (in Russ.).
Guseva, E.V., Grishin, E.I., Sitalo, A.V. (2015). Study of self-organization of amino-containing calix[4]resorcinol by conductometry. Bulletin of the Technological University, 18(20), 45–46 (in Russ.).
Guseva, E.V., Grishin, E.I., Potapova, A.V., Grishin, P.V. (2015). Study of the aggregation properties of amino-containing calix[4]resorcinol using dynamic light scattering. Bulletin of the Technological University, 18(20), 41–42 (in Russ.).
Konovalov, A.I., Antipin, I.S., Mustafina, A.R., Solovyova, S.E., Podyachev, S.N. (2004). Design and Ionophore Properties of Some Macrocyclic Calixarene-Based Ligands. Rus. J. Coord. Chem. 30(4). 227–244. http://dx.doi.org/10.1023/B:RUCO.0000022798.77325.c3.
Peter, F., Gross, M., Hosseini, M.W., Sessions, R.B. (1981). Redox properties and stability constants of anion complexes. An electrochemical study of the complexation of metal hexacyanide anions by polyammonium macrocyclic receptor molecules. J. Chem. Soc. Chem. Commun., (20), 1067–1068. https://doi.org/10.1039/C39810001067.
MacNicol, D.D., MacKendrick, J.J., Wilson, D.R. (1978). Clathrates and molecular inclusion phenomena. Chem.Soc.Rev., 7(1), 65–87. https://doi.org/10.1039/CS9780700065.
Xu, W., Rourke, J.P., Vittal, J.J., Puddephatt, R.J. (1993). Anion inclusion by a calix[4]arene complex: A contrast between tetranuclear gold(I) and copper(I) complexes. J. Chem. Soc., Chem. Commun., (2), 145-147. https://doi.org/10.1039/C39930000145.
Gubaidullin, A.T. (2005). Amphiphilic properties and crystal packing of small molecules of organic compounds (Doctoral dissertation). Kazan: Institute of Organic and Physical Chemistry named after. A.E. Arbuzov Kazan Scientific Center of the Russian Academy of Sciences (in Russ.).
Morris, D.J., Clarkson, G.J., Wills, M. (2009). Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes. Organometallics, 28(14), 4133–4140. http://dx.doi.org/10.1021/om900099u.
Hetterscheid D.G.H., De Bruin B. (2006). Open-shell rhodium and iridium species in (catalytic) oxygenation reactions. J. Mol. Catalysis A: Chem., 251(1–2), 291–296. https://doi.org/10.1016/j.molcata.2006.02.009.
Moszner, M. (2004). Water replacement on decaaqua-di-rhodium(II)-cation; synthesis of superoxo and peroxo rhodium(III) complexes with N-donor ligands. Inorg. Chim. Acta, 357. 3613–3620. https://doi.org/10.1016/j.ica.2004.04.021
Wayland, B.B., Newman, A.R. (1981). Dioxygen and Nitric Oxide Complexes of Rhodium Porphirins. Inorg. Chem., 20(9), 3093–3097. https://doi.org/10.1021/ic50223a067.
Raynor, J.B., Gillard, R.D., Pedrosa de Jesus, J.D. (1982). Paramagnetic Dioxygen Complexes of Rhodium. J. Chem. Soc. Dalton Trans., (6), 1165–1166. https://doi.org/10.1039/DT9820001165.
Wayland, B.B., Newman, A.R. (1979). Dioxygen Complexes of Rhodium Porphirins. J. Am. Chem. Soc., 101(21), 6472–6473. https://doi.org/10.1021/ja00515a073.
Vaska, L. (1976). Dioxygen‒Metal Complexes: Toward a Unified View. Acc. Chem. Res., 9(5), 175–183. https://doi.org/10.1021/ar50101a002.
Martin, P.S. Webb, T.R., Robbins, G.A., Fanwick, R.E. (1979). Polarized Electronic Absorption Spectra for Dirhodium (II) Tetraacetate Dihydrate. Inorg. Chem., 18(2), 475–478.
Kataoka, Y., Kitagawa, Y., Saito, T., Nakanishi, Y., Sato, K., Miyazaki, Y. (2011). Theoretical study of absorption spectrum of dirhodium tetracarboxylate complex [Rh2(CH3COO)4(H2O)2] in aqueous solution revisited. Supramolecular Chemistry, 23(3–4), 329–336. https://doi.org/10.1080/10610278.2010.534553.
Zhang, X.X., Wayland, B.B. (2000). Sterically Demanding Diporphyrin Ligands and Rhodium(II) Porphyrin Bimetalloradical Complexes. Inorg. Chem., 39(23), 5318–5325. https://doi.org/10.1021/ic0006302.
Copyright (c) 2024 Е. В. Гусева, Е. В. Фесик
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.