Радиaционно-химические превращения углевородов сырой нефти из месторождения Гюнашли в Республике Азербайджан на поверхности наноглины

  • М.К. Исмаилова Институт радиационных проблем Министерства Науки и Образования Азербайджанской Республики, Баку, Республика Азербайджан https://orcid.org/0000-0003-3619-6482
  • И.И. Мустафаев Институт радиационных проблем Министерства Науки и Образования Азербайджанской Республики, Баку, Республика Азербайджан https://orcid.org/0000-0002-3141-3671
Ключевые слова: радиационно-химические превращения, нанобентонит, углеводороды, радиолиз, нефть.

Аннотация

Изучены особенности динамики преобразования функциональных групп в сырой нефти и показана роль наноглины (бентонита) в радиационно-каталитическом процессе. Выявлена роль поверхностно-промежуточных продуктов в динамике изменений процесса радиолиза. Исследовано влияние роли активных центров глинистых минералов в адсорбционном взаимодействии. Структурно-групповой состав преобразованной нефти под воздействием γ-квантов в присутствии натриевой бентонитовой глины изучали методом ИК-спектроскопии. Взаимодействия наночастиц глины с углеводородами может вызывать кооперативные эффекты, тем самым вызывая, либо предотвращая образование ароматических углеводородов. На основе исследования физико-химических процессов на поверхности наноглины можно разработать новые подходы для метаморфизма природной нефти. Сведения о свойствах и составе нефти при радиолизе в присутствии наноглины могут использоваться для установления ее генезиса, так как характерная особенность катализа связана с цикличностью процессов.

Литература

Ismayilova M.K. (2019). Influence of energy transfer in the adsorbed state of the clay at the petroleum radiolysis under gamma-radiation at room temperature. Radiation effects and defects in solids, 175( 5-6) , 472. https://doi.org/10.1080/10420150.2019.1678622.

Исмаилова М.К. (2019). Радиолиз углеводородов сырой нефти. В сб. статей Advances in Science and Technology. М.: Актуальность. РФ. С. 23–24.

Mayers R.A. (2007). Encyclopedia of analytical chemistry, Chichester.:John Wiley&Sons. P. 23.

Sheldon R.A., Van Bekkum H., Herman H.W.( 2001). Fine chemicals through heterogeneous catalysis , Germany: Wiley-VCH. P. 636. https://doi.org/10.1002/9783527612963.

Gaine M., Dyer G., Holder V. (1999). The Use of Clays as Sorbents and Catalysts, Natural Micropor. Mater. in Enviromental technology, NATO Science Series, Series E: Applied Sciences. Dordrecht: Kluwer Academic. P. 46. https://doi.org/10.1007/978-94-011-4499-5_4.

Закарина Н.А., Аутанов А.М. (2006). Новые цеолитсодержащие наноразмерные Pd-катализаторы гидроизомеризации н-алканов. Известия НАН РК. Серия химическая, 1, 41–44.

Kantevari S., Vuppalapati S., Nagarapu L. (2007).Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catalysis communications, 8, 1857. https://doi.org/10.1016/j.catcom.2007.02.022.

Mitsudome T., Nose K.,Mizugaki T. et al.(2008). Reusable montmorillonite – entrapped organocatalyst for asymmetric Diels-Alder reaction, Tetrahedron Letters, 49(38), 5464–5466. https://doi.org/10.1016/j.tetlet.2008.07.011

Закарина Н.А., Волкова Л.В., Акурпекова А.К. и др. (2005). Изомеризация н-гексана на Pd-содержащем алюминиевом монтмориллоните, Известия НАН РК. Серия химическая, 5, 3–7.

Reddy, C. R., Vijayakumar, B., Iyengar, P.et al. (2004). Synthesis of phenylacetates using aluminium-exchanged montmorillonite clay catalyst. Molecular Catalysis A: Chemical, 223(1), 117–122. https://doi.org/10.1016/j.molcata.2003.11.039.

Закарина Н.А., Волкова Л.В., Акурпекова А.К., Комашко Л.В.(2008). Изомеризация н-гексана на Pt ,Pd и Ni-катализаторах, нанесенных на столбчатый монтмориллонит, Нефтехимия, 48(3), 187–193.

Ding, Z.,Kloprogge J.T.,Frost R.L. et al.(2001). Porous clays and pillared clays-based catalyst.part 2: a review of the catalytic and molecular sieve applications . Journal of Porous

Materials, 8(4), 273–293. https://doi.org/10.1023/A:1013113030912.

Manikandan D., Divakar D., Rupa A.V. (2007). Synthesis of platinum nanoparticles in montmorillonite and their catalytic behaviour. Applied Clay Science, 37(1-2), 193–200. https://doi.org/10.1016/j.clay.2006.12.012.

Kharisov B.I., Kharissova O.V., Ubaldo O. M. (2013). Radiation synthesis of materials and compounds. London, New York.: CRC press Taylor Francis Group. P. 363.

Karl H.L. (2001). Nuclear and radiochemistry: Fundamentals and applications. 2nd ed.; New York (USA): VCH Publishers, Inc., P. 183. https://qa.ff.up.pt/rq2020/Bibliografia/Books/Nuclear_and_radiochemistry.pdf (дата обращения 15.02.2023)

Guliyeva N.K., Chichek F., Melikova S.Z. et al. (2022). The influence of ionizing radiation and temperature on structural – group composition of oil deposits. Journal of Radiation Researches, 9(1), 64–70.

Ботнева Т.А. (1987). Генетические основы классификации нефтей. М; Недра.

Максимов С.П., Ботнева Т.А., Панкина Р.Г. (1974). Прогнозирование перспектив нефтегазоносности с позиций цикличности процессов нефтеобразования. Труды ВНИГНИ, 154, 22–34.

Mustafayev I.I., Ismayilova M.K., Nurmammadova F.N. (2022). Evidence of radiocatalitic action of bentonite clay in petroleum formation: the role of dehydration reaction in hydrocarbons generation. Scientific Collection «InterConf», 99, 771–776. https://doi.org/10.51582/interconf.19-20.02.2022.087.

Mustafayev I.I., Ismayilova M.K. (2022). Influence of chemical composition of petroleum on radio-catalitic reaction mechanism. Proceedings of IV International Scientific Forum “Nuclear science and technologies”. Almaty. P. 186.

Ismayilova M.K. (2021). Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature. Problems of atomic science and technology, 5(135), 51–56. https://doi.org/10.46813/2021-135-051.

Ismayilova M.K., Mustafayev I.I., R.J. Gasimov et al. (2021). The study of nucleus reactions in Guneshli petroleum by EPR method. Proceedings of LXXI International Conference “Nucleus –2021”. Saint Petersburg. P.175.

Mustafayev I.I., Ismayilova M.K., Mammedov S.G.et al.(2021). Catalysts of radio-chemical reactions, connection with the concepts of the origin of petroleum on earth. Proceedings of LXXI International Conference “Nucleus-2021”. Saint Petersburg. P. 167.

Mustafayev I.I., Ismayilova M.K. (2018). Review: the role of radiation, Fe(III) oxides and montmorillonite in organic metamorphism. Journal of Radiation Researches, 5(1), 40–46.

Ismayilova M.K. (2019).The changes of hydrocarbon generation under the influence of gamma radiation with bentonite. Journal of Radiation Researches, 6(1), 60–64.

Mustafayev I.I., Ismayilova M.K. (2019). The influence of gamma-radiation on crude oil transformation in presence of bentonite clay. Proceedings of International Scientific-practical Conference. “Radiation and chemical safety problems”.Baku: Neshriyat-Paliqrafiya Merkezi. P. 89–90.

Исмаилова М.К.(2019). Роль ионизирующих излучений и бентонита в формировании сырой нефти. В сборнике статей XX International Scientific-Practical conference «EurasiaScience». М.: Актуальность. РФ. С.18–19. https://xn--80aa3afkgvdfe5he.xn--p1ai/ES-20_originalmaket_N.pdf. (дата обращения 15.02.2023)

Тимощенко Л.В., Сарычева Т.А. (2012). Органическая химия. Часть 1, Томск: Томский политехнический университет.

Опубликован
2023-06-05
Как цитировать
Исмаилова, М., & Мустафаев, И. (2023). Радиaционно-химические превращения углевородов сырой нефти из месторождения Гюнашли в Республике Азербайджан на поверхности наноглины. Химическая безопасность, 7(1), 173 - 183. https://doi.org/10.25514/CHS.2023.1.24013
Раздел
Наноразмерные объекты и наноматериалы