Определение остаточных количеств пестицидов в объектах окружающей среды и пищевых продуктах. Обзор
Аннотация
Представлен анализ литературы 2017 – 2022 гг. об основных особенностях методик, разрабатываемых для определения пестицидов в объектах окружающей среды и продуктах питания как растительного, так и животного происхождения. В пробоподготовке наиболее востребованными являются современные подходы, сочетающие одновременно извлечение, концентрирование и очистку образцов, а именно дисперсионная твердофазная экстракция и дисперсионная жидкостно-жидкостная микроэкстракция. Продемонстрированы преимущества высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрией и универсальными способами пробоподготовки для проведения экологического мониторинга и мониторинга безопасности пищевой продукции. Показана возможность одновременного определения пестицидов различных классов и продуктов их трансформации с использованием ВЭЖХ в сочетании с масс-спектрометрией высокого разрешения и предварительной подготовкой образцов методом QuEChERS. В связи с возможностью более точного определения масс, метод успешно применяется в анализе исходных соединений, их метаболитов и наиболее перспективен для многокомпонентного анализа.
Литература
Narenderan, S., Meyyanathan, S.N., & Babu, B. (2020). Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int., 133, 109141. https://doi.org/10.1016/j.foodres.2020.109141
Rathi, B.S., Kumar, P.S., & Vo, D.N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ., 797, 149134. https://doi.org/10.1016/j.scitotenv.2021.149134
de O Gomes, H., Menezes, J.M., da Costa, J.G., Coutinho, H.D., Teixeira, R.N., & do Nascimento, R.F. (2020). A socio-environmental perspective on pesticide use and food production. Ecotoxicol. Environ. Saf., 197, 110627. https://doi.org/10.1016/j.ecoenv.2020.110627
Shabbir, M., Singh, M., Maiti, S., & Saha, S. K. (2021). Organophosphate pesticide (Chlorpyrifos): Environmental menace; study reveals genotoxicity on plant and animal cells. Environmental Challenges, 5, 100313. https://doi.org/10.1016/j.envc.2021.100313
National Catalog of Pesticides and Agrochemicals dated April 26, 2022 https://mcx.gov.ru/ministry/departments/departament-rastenievodstva-mekhanizatsii-khimizatsii-i-zashchity-rasteniy/industry-information/info-gosudarstvennaya-usluga-po-gosudarstvennoy-registratsii-pestitsidov-i-agrokhimikatov/?ysclid=l3b5osgyil (accessed 17.05.2022).
Tuzimski, T. (2019). Herbicides and Pesticides. In book Encyclopedia of Analytical Science (Third Edition). Academic Press. P. 391–398. https://doi.org/10.1016/B978-0-12-409547-2.14395-1
Ochoa V., Maestroni B. (2018). Chapter 9 - Pesticides in Water, Soil, and Sediments. In book Integrated Analytical Approaches for Pesticide Management. Academic Press. P. 133–147. https://doi.org/10.1016/B978-0-12-816155-5.00009-9
Carazo-Rojas, E., Pérez-Rojas, G., Pérez-Villanueva, M.E., Chinchilla-Soto, C., Chin-Pampillo, J., Aguilar-Mora, P., Alpízar-Marín, M., Masís-Mora, M., Rodríguez-Rodríguez, C.E., & Vryzas, Z. (2018). Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ. Pollut., 241, 800–809. https://doi.org/10.1016/j.envpol.2018.06.020
Nørskov, N.P., Jensen, S.K., & Sorensen, M.T. (2019). Robust and highly sensitive micro liquid chromatography-tandem mass spectrometry method for analyses of polar pesticides (glyphosate, aminomethylphosfonic acid, N-acetyl glyphosate and N-acetyl aminomethylphosfonic acid) in multiple biological matrices. J. Chromatogr. A, 360343. https://doi.org/10.1016/j.chroma.2019.06.064
Tsygankov, V.Y. (2019). Organochlorine pesticides in marine ecosystems of the Far Eastern Seas of Russia (2000-2017). Water Res., 161, 43–53. https://doi.org/10.1016/j.watres.2019.05.103
Samsidar, A., Siddiquee, S., & Shaarani, S.M. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol., 71, 188–201. https://doi.org/10.1016/j.tifs.2017.11.011
Rahman, M., Hoque, M.S., Bhowmik, S., Ferdousi, S., Kabiraz, M.P., & van Brakel, M.L. (2021). Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon, 7(3), e06390. https://doi.org/10.1016/j.heliyon.2021.e06390
Watanabe, E. (2021). Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods. J. Chromatogr. A, 1643, 462042. https://doi.org/10.1016/j.chroma.2021.462042
Wang, J., Xu, J., Ji, X., Wu, H., Yang, H., Zhang, H., Zhang, X., Li, Z., Ni, X., & Qian, M. (2019). Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 460808. https://doi.org/10.1016/j.chroma.2019.460808
Huérfano Barco, I.M., España Amórtegui, J.C., & Guerrero Dallos, J.A. (2021). Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem., 367, 130714. https://doi.org/10.1016/j.foodchem.2021.130714
Zhang, X., Song, Y., Jia, Q., Zhang, L., Zhang, W., Mu, P., Jia, Y., Qian, Y., & Qiu, J. (2019). Simultaneous determination of 58 pesticides and relevant metabolites in eggs with a multi-functional filter by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1593, 81–90. https://doi.org/10.1016/j.chroma.2019.01.074
Ibáñez, M. (2017). Chapter 13 - Multiresidue methods for pesticides and related contaminants in food. In book Liquid Chromatography (Second Edition), Elsevier. P. 381–400. https://doi.org/10.1016/B978-0-12-805392-8.00013-X
Kaur, N., Khunger, A., Wallen, S.L., Kaushik, A.K., Chaudhary, G.R., & Varma, R.S. (2021). Advanced green analytical chemistry for environmental pesticide detection. Curr. Opin. Green Sustain. Chem., 30, 100488. https://doi.org/10.1016/j.cogsc.2021.100488
Issa, M.M., M Taha, S., El-Marsafy, A.M., Khalil, M.M., & Ismail, E.H. (2020). Acetonitrile-Ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS. J. Chromatogr. B, 1145, 122106. https://doi.org/10.1016/j.jchromb.2020.122106
Zhao, L., Szakas, T., Churley, M., & Lucas, D. (2019). Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup. J. Chromatogr. A, 1584, 1–12. https://doi.org/10.1016/j.chroma.2018.11.022
Pang, G., Chang, Q., Bai, R., Fan, C., Zhang, Z., Yan, H., & Wu, X. (2020). Simultaneous Screening of 733 Pesticide Residues in Fruits and Vegetables by a GC/LC-Q-TOFMS Combination Technique. Engineering, 6, 432–441. https://doi.org/10.1016/j.eng.2019.08.008
Rahman, M.M., Abd El-Aty, A.M., Kim, S., Lee, Y., Na, T.W., Park, J., Shin, H., & Shim, J. (2017). Simultaneous determination and identity confirmation of thiodicarb and its degradation product methomyl in animal-derived foodstuffs using high-performance liquid chromatography with fluorescence detection and tandem mass spectrometry. J. Chromatogr. B, 1040, 97–104. https://doi.org/10.1016/j.jchromb.2016.12.013
Saito-Shida, S., Kashiwabara, N., Nemoto, S., & Akiyama, H. (2022). Development of an LC–MS/MS-based method for determination of acetochlor and its metabolites in crops. J. Food Compost. Anal., 108, 104454. https://doi.org/10.1016/j.jfca.2022.104454
Zhao, J., Pu, J., Wu, X., Chen, B., He, Y., Zhang, Y., & Han, B. (2021). Evaluation of the matrix effect of pH value and sugar content on the analysis of pesticides in tropical fruits by UPLC-MS/MS. Microchem. J., 168, 106375. https://doi.org/10.1016/j.microc.2021.106375
Pena-Pereira, F., Bendicho, C., Pavlović, D.M., Martín‐Esteban, A., Díaz-Álvarez, M., Pan, Y., Cooper, J., Yang, Z., Safarik, I., Pospiskova, K., Segundo, M.A., & Psillakis, E. (2021). Miniaturized analytical methods for determination of environmental contaminants of emerging concern – A review. Anal. Chim. Acta, 1158, 238108. https://doi.org/10.1016/j.aca.2020.11.040
Dmitrienko, S.G., Apyari, V.V., Tolmacheva, V.V., & Gorbunova, M.V. (2021). Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. J. Anal. Chem., 76(8), 907–919. https://doi.org/10.1134/S1061934821080049
Musarurwa, H., Chimuka, L., Pakade, V.E., & Tavengwa, N.T. (2019). Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J. Food Compost. Anal., 84, 103314. https://doi.org/10.1016/j.jfca.2019.103314
Amelin, V.G., Bolshakov, D.S., Avdeyeva, N.M., Podkolzin, I.V., & Nikeshina, T.B. (2017). Identification and determination of contaminants of different classes in food products and feed by high resolution mass spectrometry with standard addition method. Trudy federal'nogo tsentra okhrany zdorov'ya zhivotnykh = Proceedings of the federal center for animal health, 15, 171–210. (in Russ.)
Andraščíková, M., Hrouzková, S., & Cunha, S.C. (2013). Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples. Food Addit. Contam.: Part A, 30(2), 286–297. https://doi.org/10.1080/19440049.2012.736029
Amelin, V.G., Bol’shakov, D.S. & Andoralov, A.M. (2017). Determination of neonicotinoid insecticides in natural waters by high-resolution time-of-flight mass spectrometry with direct electrospray ionization of samples. J Anal. Chem., 72, 178–182. https://doi.org/10.1134/S1061934816120030
Amórtegui, J.C.E., & Dallos, J.A.G. (2018). Chapter 8 - Overview of Analytical Methodologies and Techniques for Pesticide Residue Analysis. In book Integrated Analytical Approaches for Pesticide Management. Academic Press. P. 123–132. https://doi.org/10.1016/B978-0-12-816155-5.00008-7
Siraj, J., Mekonen, S., Astatkie, H., & Gure, A. (2021). Organochlorine pesticide residues in tea and their potential risks to consumers in Ethiopia. Heliyon, 7(7), e07667. https://doi.org/10.1016/j.heliyon.2021.e07667
Sander, L.C., Schantz, M.M., & Wise, S.A. (2017). Chapter 14 - Environmental analysis: Persistent organic pollutants. In book Liquid Chromatography (Second Edition). Elsevier. 2017. P. 401–449. https://doi.org/10.1016/B978-0-12-805392-8.00014-1
Do Lago, C.L., Daniel, D., Lopes, F.S., & Cieslarová, Z. (2020). 10 – Electrophoresis. In book Chemical Analysis of Food (Second Edition). Academic Press. P. 499–523. https://doi.org/10.1016/B978-0-12-813266-1.00010-3.
Sapahin, H.A., Makahleh, A., & Saad, B. (2019). Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arab. J. Chem., 12(8), 1934–1944. https://doi.org/10.1016/j.arabjc.2014.12.001
Zhou, L., Yang, J., Tao, Z., Eremin, S.A., Hua, X., & Wang, M. (2020). Development of Fluorescence Polarization Immunoassay for Imidacloprid in Environmental and Agricultural Samples. Front. Chem., 8, 615594. https://doi.org/10.3389/fchem.2020.615594
Petrarca, M.H., Ccanccapa-Cartagena, A., Masiá, A., Godoy, H.T., & Picó, Y. (2017). Comparison of green sample preparation techniques in the analysis of pyrethrins and pyrethroids in baby food by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1497, 28–37. https://doi.org/10.1016/j.chroma.2017.03.065
Viera, M.S., Rizzetti, T.M., de Souza, M.P., Martins, M.L., Prestes, O.D., Adaime, M.B., & Zanella, R. (2017). Multiresidue determination of pesticides in crop plants by the quick, easy, cheap, effective, rugged, and safe method and ultra-high-performance liquid chromatography tandem mass spectrometry using a calibration based on a single level standard addition in the sample. J. Chromatogr. A, 1526, 119–127. https://doi.org/10.1016/j.chroma.2017.10.048
Zaidon, S.Z., Ho, Y.B., Hamsan, H., Hashim, Z., Saari, N., & Praveena, S.M. (2019). Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchem. J., 145, 614–621. https://doi.org/10.1016/j.microc.2018.11.025
Sapozhnikova, Ye. (2018). High-throughput analytical method for 265 pesticides and environmental contaminants in meats and poultry by fast low pressure gas chromatography and ultrahigh-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 1572, 203–211. https://doi.org/10.1016/j.chroma.2018.08.025
Jia, Q., Qiu, J., Zhang, L., Liao, G., Jia, Y., & Qian, Y. (2022). Multiclass Comparative Analysis of Veterinary Drugs, Mycotoxins, and Pesticides in Bovine Milk by Ultrahigh-Performance Liquid Chromatography–Hybrid Quadrupole–Linear Ion Trap Mass Spectrometry. Foods, 11(3), 331. https://doi.org/10.3390/foods11030331
Hintze, S., Hannalla, Y.S.B., Guinchard, S., Hunkeler, D., & Glauser, G. (2021). Determination of chlorothalonil metabolites in soil and water samples. J. Chromatogr. A, 1655, 462507. https://doi.org/10.1016/j.chroma.2021.462507
Na, T.-W., Md. Musfiqur Rahman, Kim, S.-W., Haque, M.E., Eun, J.-B., & Shim, J.-H. (2020). Upgrading analytical methodology through comparative study for screening of 267 pesticides/metabolites in five representative matrices using UPLC-MS/MS. J. Chromatogr. B, 1141, 122021. https://doi.org/10.1016/j.jchromb.2020.122021
Danek, M., Fang, X., Tang, J., Plonka, J., & Barchanska, H. (2021). Simultaneous determination of pesticides and their degradation products in potatoes by MSPD-LC-MS/MS. J. Food Compost. Anal., 104, 104129. https://doi.org/10.1016/j.jfca.2021.104129
Hamadamin, A.Y., & Hassan, K.I. (2020). Gas chromatography–mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Saudi J. Biol. Sci., 27(3), 887–893. https://doi.org/10.1016/j.sjbs.2019.12.029
Kaczyński, P., Łozowicka, B., Perkowski, M., & Szabuńko, J. (2017). Multiclass pesticide residue analysis in fish muscle and liver on one-step extraction-cleanup strategy coupled with liquid chromatography tandem mass spectrometry. Ecotoxicol. Environ. Saf., 138, 179–189. https://doi.org/10.1016/j.ecoenv.2016.12.040
Konatu, F.R.B., Breitkreitz, M.C., & Jardim, I.C.S.F. (2017). Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1482, 11–22. https://doi.org/10.1016/j.chroma.2016.12.061
Machado, I., Gérez, N., Pistón, M., Heinzen, H., & Cesio, M.V. (2017). Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem., 227, 227–236. https://doi.org/10.1016/j.foodchem.2017.01.025
Amelin, V. G, Bol'shakov, D.S., & Andoralov, A.M. (2018). Screening and Determination of Pesticides from Various Classes in Natural Water without Sample Preparation by Ultra HPLC–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry. J Anal. Chem., 73(3), 257–265. https://doi.org/10.1134/S1061934818030024
Biparva, P., Gorji, S., & Hedayati, E. (2020). Promoted reaction microextraction for determining pesticide residues in environmental water samples using gas chromatography-mass spectrometry. J. Chromatogr. A, 1612, 460639. https://doi.org/10.1016/j.chroma.2019.460639
da Costa Morais, E.H., Collins, C.H., & Jardim, I.C.S.F. (2018). Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS. Food Chem., 249, 77–83. https://doi.org/10.1016/j.foodchem.2017.12.092
Kim, Y.-A., Abd El-Aty, A.M., Md. Musfiqur Rahman, Jeong, J.H., Shin, H.-C., Wang, J., Shin, S.S., & Shim, J.-H. (2018). Method development, matrix effect, and risk assessment of 49 multiclass pesticides in kiwifruit using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B, 1076, 130–138. https://doi.org/10.1016/j.jchromb.2018.01.015
Gaweł, M., Kiljanek, T., Niewiadowska, A., Semeniuk, S., Goliszek, M., Burek, O., & Posyniak, A. (2019). Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem., 282, 36–47. https://doi.org/10.1016/j.foodchem.2019.01.003
Wang, F., Li, S., Feng, H., Yang, Y., Xiao, B., & Chen, D. (2019). An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem., 275, 530–538. https://doi.org/10.1016/j.foodchem.2018.09.142
Zhou, H., Cao, Y.-M., Miao, S., Lan, L., Chen, M., Li, W.-T., Mao, X.-H., & Ji, S. (2019). Qualitative screening and quantitative determination of 569 pesticide residues in honeysuckle using ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high resolution mass spectrometry. J. Chromatogr. A, 1606, 460374. https://doi.org/10.1016/j.chroma.2019.460374
Manav, Ö.G., Dinç-Zor, Ş., & Alpdoğan, G. (2019). Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J., 144, 124–129. https://doi.org/10.1016/j.microc.2018.08.056
Weng, R., Lou, S., Pang, X., Song, Y., Su, X., Xiao, Z., & Qiu, J. (2020). Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem., 309, 125503. https://doi.org/10.1016/j.foodchem.2019.125503
Acosta-Dacal, A., Rial-Berriel, C., Díaz-Díaz, R., del Mar Bernal-Suárez, M., & Luzardo, O.P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ., 753, 142015. https://doi.org/10.1016/j.scitotenv.2020.142015
Theurillat, X., Dubois, M., & Huertas-Pérez, J.F. (2021). A multi-residue pesticide determination in fatty food commodities by modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Food Chem., 353, 129039. https://doi.org/10.1016/j.foodchem.2021.129039
Shin, D., Kim, J., & Kang, H.-S. (2021). Simultaneous determination of multi-pesticide residues in fish and shrimp using dispersive-solid phase extraction with liquid chromatography–tandem mass spectrometry. Food Control, 120, 107552. https://doi.org/10.1016/j.foodcont.2020.107552
Pang, X., Liu ,X., Peng, L., Chen, Z., Qiu, J., Su, X., Yu, C., Zhang, J., & Weng, R. (2021). Wide-scope multi-residue analysis of pesticides in beef by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Chem., 351, 129345. https://doi.org/10.1016/j.foodchem.2021.129345
Tóth, E., Tölgyesi, Á., Simon, A., Bálint, M., Ma, X., & Sharma, V.K. (2022). An Alternative Strategy for Screening and Confirmation of 330 Pesticides in Ground- and Surface Water Using Liquid Chromatography Tandem Mass Spectrometry. Molecules, 27, 1872. https://doi.org/10.3390/molecules27061872
García-Vara, M., Postigo, C., Palma, P., Bleda, M.J., & de Alda, M.L. (2022). QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chem., 386, 132558. https://doi.org/10.1016/j.foodchem.2022.132558
Valverde, M.G., Bueno, M.J.M., del Mar Gómez-Ramos, M., Díaz-Galiano, F.J., & Fernández-Alba, A.R. (2021). Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils. MethodsX, 8, 101290. https://doi.org/10.1016/j.mex.2021.101290
EN 15662:2018. Foods of Plant Origin – Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE – Modular QuEChERS-Method. https://standards.iteh.ai/catalog/standards/cen/167a30bc-edf9-4cf8-b96b-cabd932f2f02/en-15662-2018 (дата обращения 06.05.2022).
Casado, J., Santillo, D., & Johnston, P. (2018). Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry // Anal. Chim. Acta, 1024, 1–17. https://doi.org/10.1016/j.aca.2018.04.026
Kaufmann, A. (2020). The use of UHPLC, IMS, and HRMS in multiresidue analytical methods: A critical review. J. Chromatogr. B, 1158, 122369. https://doi.org/10.1016/j.jchromb.2020.122369
Amelin, V.G., Saun’kina, M.A., & Andoralov, A.M. (2018). Direct analysis of natural waters in real time by electrospray ionization/quadrupole time-of-flight high-resolution mass spectrometry. Determination of pesticides different classes. Moscow University Chemistry Bulletin, 59(1), 35–42. (in Russ).
Pang, G.-F. (2018). Chapter 3 - Analytical Methods for 790 Pesticides and Related Chemical Residues in Products of Animal Origin, Chapter 4 - Determination of 450 Pesticides and Related Chemical Residues in Drinking Water: LC-MS-MS Method (GB/T 23214-2008). In book Analytical Methods for Food Safety by Mass Spectrometry. Academic Press. P. 151–257, 259–272. https://doi.org/10.1016/B978-0-12-814167-0.00003-X, https://doi.org/10.1016/B978-0-12-814167-0.00004-1
Wang, X., Jia, R., Song, Y., Wang, M., Zhao, Q., & Sun, S. (2019). Determination of pesticides and their degradation products in water samples by solid-phase extraction coupled with liquid chromatography-mass spectrometry. Microchem. J., 149, 104013. https://doi.org/10.1016/j.microc.2019.104013
Pasupuleti, R.R., Tsai, P.-C., & Ponnusamy, V.K. (2019). A fast and sensitive analytical procedure for monitoring of synthetic pyrethroid pesticides' metabolites in environmental water samples. Microchem. J., 148, 355–363. https://doi.org/10.1016/j.microc.2019.05.030
Kiljanek, T., Niewiadowska, A., Małysiak, M., & Posyniak A. (2021). Miniaturized multiresidue method for determination of 267 pesticides, their metabolites and polychlorinated biphenyls in low mass beebread samples by liquid and gas chromatography coupled with tandem mass spectrometry. Talanta, 235, 122721. https://doi.org/10.1016/j.talanta.2021.122721
Zhao, Y., Bai, X.-L., Liu, Y.-M., & Liao, X. (2021). Determination of fipronil and its metabolites in egg samples by UHPLC coupled with Q-Exactive high resolution mass spectrometry after magnetic solid-phase extraction. Microchem. J., 169, 106540. https://doi.org/10.1016/j.microc.2021.106540
Huang, H., Li, Z., He, Y., Huang, L., Xu, X., Pan, C., Guo, F., Yang, H., & Tang, S. (2021). Nontarget and high-throughput screening of pesticides and metabolites residues in tea using ultra-high-performance liquid chromatography and quadrupole-orbitrap high-resolution mass spectrometry. J. Chromatogr. B, 1179, 122847. https://doi.org/10.1016/j.jchromb.2021.122847
Rajski, Ł., Petromelidou, S., Díaz-Galiano, F.J., Ferrer, C., & Fernández-Alba, A.R. (2021). Improving the simultaneous target and non-target analysis LC-amenable pesticide residues using high speed Orbitrap mass spectrometry with combined multiple acquisition modes. Talanta, 228, 122241. https://doi.org/10.1016/j.talanta.2021.122241
Steiner, D., Sulyok, M., Malachová, A., Mueller, A., & Krska, R. (2020). Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A, 1629, 461502. https://doi.org/10.1016/j.chroma.2020.461502
Reichert, B., de Kok, A., Pizzutti, I.R., Scholten, J., Cardoso, C.D., & Spanjer, M. (2018). Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Anal. Chim. Acta, 1004, 40–50. https://doi.org/10.1016/j.aca.2017.11.077
Kresse, M., Drinda, H., Romanotto, A., & Speer, K. (2019). Simultaneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. J. Chromatogr. B, 1117, 86–102. https://doi.org/10.1016/j.jchromb.2019.04.013
Xu, X., Xu, X., Han, M., Qiu, S., & Hou, X. (2019). Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem, 276, 419–426. https://doi.org/10.1016/j.foodchem.2018.10.051
Jadhav, M.R., Pudale, A., Raut, P., Utture, S., Shabeer ,T.P.A., & Banerjee, K. (2019). A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chem, 272, 292–305. https://doi.org/10.1016/j.foodchem.2018.08.033
Zhan, J., Shi, X.-Z., Xu, X.-W., Cao, G.-Z., & Chen, X.-F. (2020). Generic and rapid determination of low molecular weight organic chemical contaminants in protein powder by using ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. В, 1138, 121967. https://doi.org/10.1016/j.jchromb.2020.121967
Castilla-Fernández, D., Moreno-González, D., Bouza, M., Saez-Gómez, A., Ballesteros, E., García-Reyes, J.F., & Molina-Díaz, A. (2021). Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control, 130, 108311. https://doi.org/10.1016/j.foodcont.2021.108311
Izzo, L., Narváez, A., Castaldo, L., Gaspari, A., Rodríguez-Carrasco, Y., Grosso, M., & Ritieni, A. (2022). Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. J. Dairy Sci., 105(4), 2948–2962. https://doi.org/10.3168/jds.2021-21123
Copyright (c) 2022 О. Лаврухина, В. Г. Амелин, Л. К. Киш, А. В. Третьяков, Д. К. Лаврухин

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.