Современные подходы к разработке эффективных организованных микрогетерогенных систем на основе детергентов для разложения фосфорорганических соединений. Обзор
Аннотация
Выяснение закономерностей влияния организованных сред на реакционную способность органических соединений, установление количественных закономерностей «структура–свойство–мицеллярные эффекты» и поиск путей модификации и функционализации микроорганизованных систем открывают широкие перспективы управления скоростями химических реакций. Решение такой задачи напрямую связано с минимизацией актов террористического воздействия и техногенных аварий. Разложение субстратов-экотоксикантов предполагает использование реакционной среды, удовлетворяющей критериям «Green chemistry», что является необходимым условием, и таковыми выступают растворы ПАВ. Для создания высокоэффективных организованных микрогетерогенных систем (ОМС) для катализа на основе димерных ПАВ были реализованы три следующих направления. Первое – варьирование структуры катионных ПАВ в реакциях щелочного гидролиза. Второе – конструирование ПАВ с реакционноспособным противоионом (дигалогенгалогенат) – системы широкого спектра действия, одновременно выступающей источником нуклеофильно-окислительного реагента и реализующей преимущества ОМС. Третье – формирование функционализированных наноразмерных ансамблей, обладающих на порядки более высокой эффективностью, чем не функционализированные. Мицеллярные эффекты в реакциях разложения 4-нитрофениловых эфиров диэтилфосфоновой, диэтилфосфорной и толуолсульфоновой кислот достигают ~ 102 (щелочной гидролиз) – 104 раз (системы на основе функционализированных ПАВ). При этом основной вклад в наблюдаемое ускорение при переносе процесса из воды в мицеллярную псевдофазу вносят эффекты концентрирования реагентов и изменение нуклеофильной реакционной способности. В этом случае важное значение имеют гидрофобные свойства ПАВ и субстратов, природа катионной части головной группы и мостикового звена.
Литература
Kim, K., Tsay, O.G., Atwood, D.A., & Churchill, D.G. (2011). Destruction and detection of chemical warfare agents. Chem. Rev., 111, 5345–5403.https://doi.org/10.1021/cr100193y
Mondal, M.H., Roy, A., Malik, S., Ghosh, A., & Saha, B. (2015). Review on chemically bonded geminis with cationic heads: second-generation interfactants. Res. Chem. Intermed., 42(3), 1913–1928. https://doi.org/10.1007/s11164-015-2125-z
Domínguez-Arca, V., Sabín, J., Taboada, P., García-Río, L., & Prieto, G. (2020). Micellization Thermodynamic Behavior of Gemini Cationic Surfactants. Modeling its Adsorption at Air/Water Interface; J. Mol. Liq, 308(15), 1–48. https://doi.org/10.1016/j.molliq.2020.113100
Duirk, S. E., Desetto, L.M., Davis, G. M. (2009). Transformation of Organophosphorus Pesticides in the Presence of Aqueous Chlorine: Kinetics, Pathways, and Structure-Activity Relationships. Environ. Sci. Technol., 43(7), 2335–2340. https://doi.org/10.1021/es802868y
Polarz, S., Kunkel, M., Donner, A., & Schlött, M. (2018). Added-Value Surfactants. Chem. Eur. J., 24(71), 18842–18856. https://doi.org/10.1002/chem.201802279
Kushan, P., Mistry, B. Jana, S., Gupta, S., Devkar, R.V., & Kumar, S. (2015). Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 206, 19–28. https://doi.org/10.1016/j.molliq.2015.01.055
Raynal, M., Ballester, P., Vidal-Ferran, A., & van Leeuwen, Piet W.N.M. (2014). Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev., 43, 1660–1733. https://doi.org/10.1039/c3cs60027k
Deraedt, C., & Didier, A. (2016). Supramolecular nanoreactors for catalysis. Coord. Chem. Rev., 324, 106–122. https://doi.org/10.1016/j.ccr.2016.07.007
Mirgorodskaya, A.B., Zakharova, L.Ya, Khairutdinova, E.I., Lukashenko, S.S., & Sinyashin O.G. (2016). Supramolecular systems based on gemini surfactants for enhancing solubility of spectral probes and drugs in aqueous solution. Colloids and Surfaces A, 510, 33–42. https://doi.org/10.1016/j.colsurfa.2016.07.065
Zakharova, L.Ya., & Konovalov. A.I. (2012). Supramolecular systems based on cationic surfactants and amphiphilic macrocycles. Colloid Journal, 74(2), 194–206. https://doi.org/10.1134/S1061933X12020147
Pavez, P., Oliva, G., & Millán D. (2016). Green solvents as a Promising Approach to Degradation of Organophosphorate Pesticides. ACS Sustain. Chem. Eng., 4(12), 7023–7031. https://doi.org/10.1021/acssuschemeng.6b01923
Bhadani, T., Misono, S., Singh, K., Sakai, H., Sakai, M., & Abe, M. (2016). Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Advances in Colloid and Interface Science., 231(12), 36–58. https://doi.org/10.1016/j.cis.2016.03.005
Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M., Gaidash, T.S., Razumova N.G., Panchenko, B.V., & Mikhailov V.A. (2020). Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II. Alkaline Hydrolysis of Ethyl
-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants. Russ. J. Org. Chem., 56(1), 53–58. https://doi.org/1134/S1070428020010091
Kandpal, N., Dewangan, H.K., Nagwanshi, R., Ghosh, Kallol K., & Satnami, M.L. (2018). Micellar-accelerated hydrolysis of organophosphate and thiophosphates by pyridine oximate. Int. J. Chem. Kinet., 50(11), 827–835. https://doi.org/10.1002/kin.21217
Kandpal, N., Dewangan, H.K., Nagwanshi, R., Ghosh, Kallol K., & Satnami, M.L. (2018). Influence of pyridine oximate and quaternized pyridinium oximate ions on the hydrolysis of phosphate esters in cationic microemulsions. J. Dispersion Sci. Technol., 30, 1–8. https://doi.org/10.1080/01932691.2018.1476151
Mirgorodskaya, A.B., Valeeva, F.G., Lukashenko, S.S., Kushnazarova, R.A., Prokop’eva, T.M., Zubareva, T.M., Mikhailov, V.A., & Zakharova, L.Ya. (2018). Dicationic hydroxylic surfactants: Aggregation behavior, guest-host interaction and catalytic effect. J. Mol. Liq., 250, 229–235. https://doi.org/10.1016/j.molliq.2017.11.175
Samiey, B., Cheng, C.-H., & Wu, J. (2014). Effects of Surfactants on the Rate of Chemical Reactions J. Chem., 2014, 1–4. http://dx.doi.org/10.1155/2014/908476
Bedford, C.T. Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives. In: Organic Reaction Mechanisms 2014 / Ed. A.C. Knipe – Wiley, 2018. – P. 87–122.
Wagner, G.W., Sorrick, D.C., Procell, L.R., Brickhouse, M.D., Mcvey, I.F., & Schwartz, L.I. (2007). Decontamination of VX, GD, and HD on a Sulface Using Modified Vaporized Hydrogen Peroxide. Langmuir, 23(3), 1178–1186. https://doi.org/10.1021/la062708i
Yang, Yu-Chu, (1999). Chemical Detoxification of Nerve Agent VX. Acc. Chem. Res., 32(2), 109–115. https://doi.org/10.1021/ar970154s
Talmage, S.S., Watson, A.P., Hauschild, V., Munro, N.B., & King J. (2007). Chemical Warfare Agent Degradation and Decontamination. Curr. Org. Chem., 11(3), 285–298. https://doi.org/10.2174/138527207779940892
Cassagne, T., Cristau, H.-J., Delmas, G., Desgranges, M., Lion, C., Magnaud, G., Torreilles, É., & Virieux, D. (2001). Destruction of Chemical Warfare Agents VX and Soman by
-Nucleophiles as Oxidizing Agents. Heteroat. Chem., 12(6), 485–490. https://doi.org/10.1002/hc.1074
Wagner, G.W., & Yang, Yu-Chu (2002). Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents. Ind. Eng. Chem. Res., 41(8), 1925–1928. https://doi.org/10.1021/ie010732f
Yang, Yu-Chu, Baker, J.A., & Ward, J.R. (1992). Decontamination of Chemical Warfare Agents. Chem. Rev., 92(8), 1729–1743. https://doi.org/10.1021/cr00016a003
Yao, H., & Richardson, D.E. (2003). Bicarbonate Surfoxidants: Micellar Oxidations of Aryl Sulfides with Bicarbonate-Activated Hydrogen Peroxide. J. Am. Chem. Soc., 125(20), 6211–6221. https://doi.org/10.1021/ja0274756
Bunton, C.A., & Gillitt, N.D. (2002). Oxidation of Thioanisole by peroxomolybdate ions: direct oxygen transfer from tetraperoxomolybdate ion. J. Phys. Org. Chem., 15(1), 29–35. https://doi.org/10.1002/poc.442
Ghosh, K.K., Tiwari, S., Marek, J. & Kuca, K. (2010). New insights into detoxification of chemical warfare simulants and pesticides using micelle mediated systems. Main Group Chemistry, 9(3,4), 337 - 353. https://doi.org/10.3233/MGC-2010-0026.
Singh, N., Karpichev, Ye., Tiwari, A.K., Kuca, K., & Ghosh, Kallol K. (2015). Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. J. Mol. Liq., 208, 237–252. https://doi.org/10.1016/j.molliq.2015.04.010
Kapitanov, I.V., Mirgorodskaya, A.B., Valeeva, F.G., Gathergood, N., Kuca, K., Zakharova, L.Ya., & Karpichev, Ye. (2017). Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids and Surfaces A, 524, 143–159. https://doi.org/10.1016/j.colsurfa.2017.04.039
Manfredi, A.M., Demos, W., Wanderlind, E.H., Silva, B.V., Pinto, A.C., Souza, B.S. & Nome, F. (2016). Rapid cleavage of phosphate triesters by the oxime 2-(hydroxyimino)-N-phenyl-acetamide. J. Phys. Org. Chem., 29(11), 600–603. https://doi.org/10.1002/poc.3549
Prokop'eva, T.M., Simanenko, Yu.S., Suprun, I.P., Savelova, V.A., Zubareva, T.M., & Karpichev, E.A. (2001). Nucleophilic Substitution at a Four-Coordinate Sulfur Atom: VI. Reactivity of Oximate Ions. Russ. J. Org. Chem., 37(5), 655–666. https://doi.org/10.1023/A:1012487415041
Simanenko, Yu.S., Prokop’eva, T.M., Popov, A.F., Bunton, C.A., Karpichev, E.A., Savelova, V.A., & Ghosh, K.K. (2004). O-nucleophilicity of hydroxamate ions in reactions with ethyl
-nitrophenyl ethylphosphonate, diethyl 4-nitrophenyl phosphate, and 4-nitrophenyl
-toluenesulfonate. Russ. J. Org. Chem., 40(9), 1337–1350. https://doi.org/10.1007/s11178-005-0017-1
Prokop’eva, T.M., Simanenko, Yu.S., Karpichev, E.A., Savelova, V.A., & Popov A.F. (2004). O-nucleophilic features of amidoximes in acyl group transfer reactions. Russ. J. Org. Chem., 40(11), 1617–1629. https://doi.org/10.1007/s11178-005-0068-3
Pavez, P., Oliva, G., & Millán, D. (2016). Green Solvents as a Promising Approach to Degradation of Organophosphorate Pesticides ACS Sustain. Chem., Eng., 4(12), 7023–7031. https://doi.org/10.1021/acssuschemeng.6b01923
Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Savelova, V.A., Suprun, I.P., & Bunton, C.A. (2002). Inorganic Anionic Oxygen-Containing α-Nucleophiles - Effective Acyl Group Acceptors: Hydroxylamine Ranks First among the α-Nucleophile Series. Russ. J. Org. Chem., 38(9), 1286 - 1298. https://doi.org/10.1023/A:1021699628721
Simanenko, Yu.S., Popov, A.F., Prokop’eva T.M., Saviolova,V.A., Belousova, I.A., Zubareva, T.M. (1994) Anion hydroxylamine as a powerful acyl group acceptor. Mendeleev Commun., 4(6), 210 - 212. https://doi.org/10.1070/MC1994v004n06ABEH000417
Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Red'ko, A.N., Prokop'eva, T.M., & Popov, A.F. (2012). Cleavable dicationic surfactant micellar system for the decomposition of organophosphorus compounds. Theor. Exp. Chem., 47(6), 377–383. https://doi.org/10.1007/s11237-012-9230-5
Pisárčik, M., Polakovičová, M., Markuliak, M., Lukáč M., & Devínsky, F. (2019). Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules, 24, 1–13. https://doi.org/10.3390/molecules24081481
Zahran, M.K., Negm, N.A., & Mahmoud, W.A. (2013). Synthesis and Surface Activity of Some Cationic Gemini Surfactants Containing Aliphatic Spacers. Egypt. J. Chem., 56(1), 35 - 47.
Kandpal, N., Dewangan, H.K., Nagwanshi, R., & Satnami, M.L. (2018). Influence of pyridine oximate and quaternized pyridinium oximate ions on the hydrolysis of phosphate esters in cationic microemulsions. J. Dispersion Sci. Technol., 30, 1–8. https://doi.org/10.1080/01932691.2018.1476151
Zhuang, L.-H., Yu, K.-H. , Wang, G.-W., & Yao, C. (2013). Synthesis and properties of novel ester-containing gemini imidazolium surfactants. J. Colloid Interface Sci., 408, 94–100. https://doi.org/10.1016/j.jcis.2013.07.029
Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97(1-3), 205 - 253. https://doi.org/10.1016/s0001-8686(01)00069-0
Severs, N.J. (2007). Freeze-fracture electron microscopy. Nat. Protoc. 2(3), 547–576. https://doi.org/10.1038/nprot.2007.55
Simanenko, Yu.S., Popov, A.F., Karpichev, E.A., Prokop'eva, T.M., Savelova, V.A., & Bunton, C.A. (2002). Micelle Effects of Functionalized Surfactants, 1-Cetyl-3-(2-hydroxyiminopropyl)imidazolium Halides, in Reactions with p-Nitrophenyl
p-Toluenesulfonate, Diethyl p-Nitrophenyl Phosphate, and Ethyl p-Nitrophenyl Ethylphosphonate. Russ. J. Org. Chem., 38(9), 1314–1325. https://doi.org/10.1023/A:1021655813700
Simanenko, Yu.S., Karpichev, E.A., Prokop'eva, T.M., Lattes, A., Popov, A.F., Savelova, V.A., & Belousova I.A. (2004). Functional Detergents Containing an Imidazole Ring and Typical Fragments of α-Nucleophiles Underlying Micellar Systems for Cleavage of Esters of Phosphorus Acids. Russ. J. Org. Chem., 40(2), 206–218. https://doi.org/10.1023/B:RUJO.0000034943.58369.eb
Anikeev, A.V., Zubareva, T.M., Belousova, I.A., Prokopyeva, T.M., & Popov, A.F. (2010). Aggregative Properties and Electrochemical Characteristics of the Dimeric Detergents Synthesized from Diepoxides. Him. Fiz. Tehnol. Poverhni, 1(4), 450–456 (in Russ).
Zana, R., Benrraou, M., & Rueff, R. (1991). Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants. 1. Effect of the Spacer Chain length on the Critical Micelle Concentration and Micelle Ionization Degree. Langmuir, 7(6), 1072–1075. https://doi.org/10.1021/la00054a008
Anikeev, A.V., Prokopyeva, T.M., Zubareva, T.M., & Popov, A.F. (2010). Some physico-chemical properties of dimeric detergents based on tertiary diamines. Ukr. Chem. J., 76(5-6), 51–55 (in Russ).
Mikhailov, V.A., Yufit, D.S., & Struchkov, Yu.T. (1992). Reaction of bromine with
N,N-dialkylacetamides. J. Gen. Chem. USSR, 62(2), 322–327 (in Russ).
Savelova, V.A., Bunton, C.A., Prokop’eva, T.M., Turovskaya, M.K., Karpichev, E.A., Mikhailov, V.A., Kanibolotskii, A.L., Burakov, N.I., & Popov, A.F. (2004). Organotrihalide Complexes: α-Nucleophiles and Effective Oxidizing Agents in Decomposition Reactions of Organophosphorus Compounds in Water and Surfactant Micelles. Theor. Exp. Chem., 40(5), 300–308. https://doi.org/10.1023/B:THEC.0000049076.85204.82
Karpichev, E.A., Prokop'eva, T.M., Turovskaya, M.K., Mikhailov, V.A., Kapitanov, I.V., Savelova, V.A., & Popov, A.F. (2007). Micellar effects of cetyltrimethylammonium dibromobromate in phosphoryl group transfer reactions. Theor. Exp. Chem., 43(4), 241–246. https://doi.org/10.1007/s11237-007-0028-9
Kapitanov, I.V., Belousova, I.A., Turovskaya, M.K., Karpichev, E.A., Prokop’eva, T.M., & Popov, A.F. (2012). Reactivity of micellar systems based on supernucleophilic functional surfactants in processes of acyl group transfer. Russ. J. Org. Chem., 48(5), 651–662. https://doi.org/10.1134/S1070428012050041
Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., & Popov, A.F. (2013). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: I. Reactivity of a hydroxyimino derivative of gemini imidazolium surfactant. Russ. J. Org. Chem., 49(9), 1291–1299. https://doi.org/10.1134/S1070428013090091
Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., & Popov, A. F. (2014). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: II. Influence of the length of hydrophobic alkyl substituents on micellar effects of functionalized monomeric and dimeric imidazolium surfactants. Russ. J. Org. Chem., 50(5), 694–704. https://doi.org/10.1134/S1070428014050133
Prokop'eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Turovskaya, M.K., Razumova, N.G., & Popov, A.F. (2015). Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids. III. Reactivity of mixed micellar systems based on tetraalkylammonium and imidazolium surfactants. Russ. J. Org. Chem., 51(8), 1083–1090. https://doi.org/10.1134/S1070428015080047
Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Turovskaya, M.K., Prokop'eva, T.M., & Popov, A.F. (2008). Structure of the head group, nucleophilicity, and micellar effects of functional detergents in acyl transfer reactions. Theor. Exp. Chem., 44(2), 93–100. https://doi.org/10.1007/s11237-008-9015-z
Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Mikhailov, V.A., Razumova, N.G., Prokop'eva, T.M., & Popov, A.F. (2008). Reactivity of functional detergents with a pyridine ring and an α-nucleophile fragment in the head group. Theor. Exp. Chem., 44(5), 292–299. https://doi.org/10.1007/s11237-008-9044-7
Turovskaya, M.K., Kapitanov, I.V., Belousova, I.A., Tuchinskaya, K.K., Shumeiko, A.E., Kostrikin, M.L., Razumova, N.G., Prokop'eva, T.M., & Popov, A.F. (2011). Reactivity of micelle-forming 1-alkyl-3(1-oximinoethyl)pyridinium bromides in acyl group transfer reactions. Theor. Exp. Chem., 47(1), 21–29. https://doi.org/10.1007/s11237-011-9179-9
Turovskaya, M.K., Prokop'eva, T.M., Karpichev, E.A., Shumeiko, A.E., Kostrikin, M.L., Savelova, V.A., Kapitanov, I.V., & Popov, A.F. (2006). Nucleophilicity of functional surface active substances in the transfer of phosphoryl groups. Theor. Exp. Chem., 42(5), 295–302. https://doi.org/10.1007/s11237-006-0056-x
Prokop'eva, T.M., Karpichev, E.A., Belousova, I.A., Turovskaya, M.K., Shumeiko, A.E., Kostrikin, M.L., Razumova, N.G., Kapitanov, I.V., & Popov, A.F. (2010). Characteristic features of the change in reactivity of supernucleophilic functional surfactants in acyl group transfer processes. Theor. Exp. Chem., 46(2), 94–101. https://doi.org/10.1007/s11237-010-9124-3
Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Anikeev, A.V., Turovskaya, M.K., Zubareva, T.M., Panchenko, B.V., Prokop'eva, T.M., & Popov, A.F. (2010). Role of the hydrophobic properties of functional detergents on micellar effects in the dissociation of environmental toxicants. Theor. Exp. Chem., 46(4), 225–232. https://doi.org/10.1007/s11237-010-9144-z
Kapitanov, I.V., Belousova, I.A., Kostrikin, M.L, Prokop’eva, T.M., & Karpichev, A.E. (2015). Acyl transfers in monomeric and dimeric oximatefunctionalized surfactant micelles. VIth International Chemistry Conference “Toulouse – Kiev” (ICTK-8), 1-4 June 2015. P.184 (P109).
Kapitanov, I.V., Serdyuk, A.A., Shumeiko, Prokop’eva, T.M., & Karpichev, E.A.Popov, A.F. (2017). Acid-base properties of functionalized surfactants in micellar systems. Ukr. Chem. J., 83(8), 94–102. (in Russ).
Khan, M.N. (2006). Micellar Catalysis. Surfactant Science Series. 133., Boca Raton: CRC Press. P. 482. https://doi.org/10.1201/9781420015843
Handbook of applied surface and colloid chemistry (2001) / ed. by K.Holmberg. – Weinheim, England: Wiley-VCH Verlag GmbH & Co. KGaA., P. 1100
Patel, U., Parekh, P., Sastry, N.V., Aswal, V.K., & Bahadur, P. J. (2017). Surface activity, micellization and solubilization of cationic Gemini surfactant – conventional surfactants mixed systems. Mol. Liq., 225, 888–896. https://doi.org/10.1016/j.molliq.2016.11.017
Kamboj, R., Singh, S., Bhadani, A., Kataria, H., & Kaur, G. (2012). Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study. Langmuir, 28, 11969–11978. https://doi.org/10.1021/la300920p
Alam, Md.S., Siddig, A.M., & Mandal, A.B. (2018). The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants. Russ. J. Phys. Chem. A, 92(1), 185–190. https://doi.org/10.1134/s0036024418010028
Scholz, N., Behnke, T., & Resch-Genger, U. (2018). Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension – A Method Comparison. J. Fluor., 28(1), 465–476. https://doi.org/10.1007/s10895-018-2209-4
Zhang, Q., Gao, Z., Xu, F., & Tai, S. (2012). Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: An electrical conductivity study. J. Coll. Interface Sci., 371, 73–81. https://doi.org/10.1016/j.jcis.2011.12.076
Prokop’eva, T.M., Belousova, I.A., Turovskaya, M.K., Razumova, N.G., Panchenko, B.V., & Mikhailov, V.A. (2018). Supernucleophilic Systems Underlain by Functionalized Surfactants in Cleavage of 4-Nitrophenyl Esters of Phosphorus and Sulfur Acids: IV. Micellar Effects of Functionalized Surfactants with a Variable Nature of the Head Group and Hydrophobicity in Transfer Reactions of the Phosphonyl Group. Russ. J. Org. Chem., 54(11), 1630–1637. https://doi.org/10.1134/S1070428018110027
Bhattacharya, S., & Kumar, V.P. (2004). Evidence of Enhanced Reactivity of DAAP Nucleophiles toward Dephosphorylation and Deacylation Reactions in Cationic Gemini Micellar Media. J. Org. Chem., 69(2), 559–562. https://doi.org/10.1021/jo034745+
Bunton, C.A. (2006). The dependence of micellar rate effects upon reaction mechanism. Adv. Coll. Interface Sci., 123–126, 333–343. https://doi.org/10.1016/j.cis.2006.05.008
Berezin, I.V., Martinek, K., & Yatsimirskii, A.K. (1973). Physicochemical Foundations of Micellar Catalysis. Russ. Chem. Rev., 42(10), 787–802. https://doi.org/10.1070/rc1973v042n10abeh002744
Wetting, S.D., & Verrall, R.E. (2001). Thermodynamic Studies of Aqueous m-s-m Gemini Surfactants. J. Coll. Interface Sci., 235, 310–316. https://doi 10.1006/jcis.2000.7348
Sood, A.K., & Sharma, S. (2016). Influence of organic solvents and temperature on the micel-lization of conventional and gemini surfactants: a conductometric study. Phys. Chem. Liq., 54, 574–588. https:/ doi 10.1080/00319104.2016.1139711
Banipal, T.S., Sood, A.K., & Singh, K. (2011). Micellization Behavior of the 14-2-14 Gemini Surfactant with Some Conventional Surfactants at Different Temperatures. J. Surfactants Deterg., 14, 235–244. https://doi 10.1007/s11743-010-1217-4
Sood, A.K., Singh, K., Kaur, J., & Banipal, T.S. (2012). Mixed Micellization Behavior of m-2-m Gemini Surfactants with Some Conventional Surfactants at Different Temperatures.
J. Surfactants Deterg., 15(3), 327–338. https://doi 10.1007/s11743-011-1314-z
Wetting, S.D., Novak, P., & Verrall, R.E. (2002). Thermodynamic and Aggregation Properties of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution. Langmuir, 18, 5354–5359. https://doi 10.1021/la011782s
Pal, J., Datta, S., Aswal, V.K., & Bhattacharya, S. (2012). Small-Angle Neutron-Scattering Studies of Mixed Micellar Structures Made of Dimeric Surfactants Having Imidazolium and Ammonium Headgroups. J. Phys. Chem. B., 116, 13239–13247. https://doi 10.1021/jp304700t
Buncel, E., & Um, I.-H. (2004). The α-effect and its modulation by solvent. Tetrahedron, 60(36), 7801–7825. https://doi.org/10.1016/j.tet.2004.05.006
Simanenko, Yu.S., Prokop'eva, T.M., Bunton, C.A., Savelova, V.A., Turovskaya, M.K., Karpichev, E.A., Mikhailov, V.A., & Popov, A.F. (2004). Supernucleophilic reactivity of hypobromite ion toward 4-nitrophenyl diethylphosphonate in water and micelles of cetyltrimethylammonium bromide. Theor. Exp. Chem., 40(3), 154–160. https://doi.org/10.1023/B:THEC.0000036210.02532.8c
Saikia, I., Borah, A.J., & Phukan, P. (2016). Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev., 116(12), 6837–7042. https://doi.org/10.1021/acs.chemrev.5b00400
Wu, X., Peng, X., Dong, X., & Dai, Z. (2012). Synthesis of 5-Bromo-2-Furfural under Solvent-Free Conditions using 1-Butyl-3-Methylimidazolium Tribromide as Brominating Agent. Asian J. Chem., 24(2), 927–928. http://www.asianjournalofchemistry.co.in
Li, Z., Sun, X., Wang, L., Li, Y., & Ma, Y. (2010). Silica-Supported Quinolinium Tribromide: A Recoverable Solid Brominating Reagent for Regioselective Monobromination of Aromatic Amines. J. Braz. Chem. Soc., 21(3), 496–501. https://doi.org/10.1590/S0103-50532010000300015
Wu, L.-Q., Yang, C.-G., Wu, Y.-F., & Yang, L.-M. (2009). Synthesis of
-Bromocoumarins using Tetrabutylammonium Tribromide as a Selective Brominating Agent and an Efficient Generator of HBr. J. Chin. Chem. Soc., 56(3), 606–608. https://doi.org/10.1002/jccs.200900090
Kar, G., Saikia, A.K., Bora, U., Dehury, S.K., & Chaudhuri M.K. (2003). Synthesis of Cetyltrimethylammonium Tribromide (CTMATB) and its Application in the Selective Oxidation of Sulfides to Sulfoxides. Tetrahedron Lett., 44(24), 4503–4505. https://doi.org/10.1016/S0040-4039(03)01015-3
Pourmousavi, S.A., & Salehi, P. (2009). Synthesis of Benzyl Triethyl Ammonium Tribromide and its Application as a Highly Efficient and Regioselective Reagent for the Bromination of Activated Aromatic Compounds. Acta Chim. Slov., 56(3), 734–739. http://acta-arhiv.chem-soc.si>56>56-03-734
Prokop’eva, T.M., Mikhailov, V.A., Turovskaya, M.K., Karpichev, E.A., Burakov, N.I., Savelova, V.A., Kapitanov, I.V., & Popov, A.F. (2008). New sources of “active” halogen bis(dialkylamide)hydrogen dibromobromates, efficient reagents for destruction of ecotoxicants. Russ. J. Org. Chem., 44(5), 637–646. https://doi.org/10.1134/S1070428008050011
Kelley, C. M., & Tartar, H. V. (1956). On the System: Bromine-W. J. Amer. Chem. Soc., 78(22), 5752–5756. https://doi.org/10.1021/ja01603a010
Turovskaya, M.K., Mikhailov, V.A., Burakov, N.I., Kapitanov, I.V., Zubareva, T.M., Lobachev, V.L., Panchenko, B.V., & Prokop’eva, T.M. (2017). Reactivity of inorganic
α-nucleophiles in acyl group transfer processes in water and surfactant micelles: I. Systems based on organic complexes of tribromide anion. Russ. J. Org. Chem., 53(3), 351–358. https://doi.org/10.1134/S107042801703006X
Brycki, B., Kowalczyk, I., Szulc, A., Kaczerewska, O., Pakiet, M. (2017), Najjar, R. (Ed.). Multi-functional gemini surfactants: structure, synthesis, properties and applications Application and Characterization of Surfactants. InTech, Rijeka, 97–155. https://doi.org/10.5772/intechopen.68755
Lombardo, D., Kiselev, M.A., Magazù, S., & Calandrabhan, P. (2015). Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches.
Adv. Condensed Matter Phys., 2015, 1–22. https://doi.org/10.1155/2015/151683
Mirgorodskaya, A.B., Kudryavtseva, L.A., Pankratov, V.A., Lukashenko, S.S., Rizvanova, L.Z., & Konovalov, A.I. (2006). Geminal Alkylammonium Surfactants: Aggregation Properties Catalytic Activity. Russ. J. Gen. Chem., 76(10), 1625–1631. https://doi.org/10.1134/S1070363206100215
Kotenko, A.A., Hilko, S.L., Prokopieva, T.M., & Mikhailov, V.A. (2019). Micellisation of cetyltrimethylammonium dihalogenohalogenates in water under basic conditions. Bulletin of Donetsk National University. Series A: Natural Sciences, No. 1, 90–99 (in Russ).
Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Belousova, I.A., & Savelova, V.A. (2002). Micellar effects of cationic detergents in the decomposition of ecotoxic substrates by hydroxide ion. Theor. Exp. Chem., 38(4), 242–249. https://doi.org/10.1023/A:1020515831658
Solomoichenko, T.N., Sadovskii, Yu.S., Prokop'eva, T.M., Karpichev, E.A., Kapitanov, I.V., Piskunova, Zh.P., Savelova, V.A., & Popov, A.F. (2006). Micellar effects of surfactants in cleavage of 4-nitrophenyl diethyl phosphonate by hydroperoxide anion. Theor. Exp. Chem., 42(6), 364–370. https://doi.org/10.1007/s11237-006-0067-7
Moss, R.A., Scrimin, P., Bhattacharya, S., & Swarup, S. (1987). An imidazole-functionalized phosphatidylcholine derivative: nucleophilic vesicles with adjustable reactivity.
J. Am. Chem. Soc., 109(20), 6209–6210. https://doi.org/10.1021/ja00254a064
Brown, J.M., Bunton, C.A., Diaz, S., & Ihara, Y. (1980). Dephosphorylation in functional micelles. The role of the imidazole group. J. Org. Chem., 45(21), 4169–4174. https://doi.org/10.1021/jo01309a021
Moss, R.A., Nahas, R.C., & Lukas, T.J. (1978). A cysteine-functionalized micellar catalyst. Tetrahedron Lett., 19(6), 507–510. https://doi.org/10.1016/S0040-4039(01)85318-1
Bunton, C.A., McAneny, M. (1976). Micellar effects on the hydrolysis of p-nitrobenzoyl choline and the related N-hexadecyl ester. J. Org. Chem., 41(1), 36–39. https://doi.org/10.1021/jo00863a008
Moss, R.A., & Ihara, Y. (1983). Cleavage of phosphate esters by hydroxyl-functionalized micellar and vesicular reagents. J. Org. Chem., 48(4), 588–592. https://doi.org/10.1021/jo00152a035
Moss, R.A., Bizzigotti, G.O., & Huang, C.-W. (1980). Nucleophilic esterolytic and displacement reactions of a micellar thiocholine surfactant. J. Am. Chem. Soc., 102(2), 754–762. https://doi.org/10.1021/ja00522a053
Epstein, J., Kaminski, J.J., Bodor, N., Enever, R., Sowa, J., & Higuchi, T. (1978). Micellar acceleration of organophosphate hydrolysis by hydroximinomethylpyridinium type surfactants. J. Org. Chem., 43(14), 2816–2821. https://doi.org/10.1021/jo00408a015
Cibulka, R., Hampl, F., Kotoučová, H., Mazáč, J., & Liška, F. (2000). Quaternary pyridinium ketoximes – new efficient micellar hydrolytic catalysts. Collect. Czech. Chem. Comm., 65(2), 227–242. https://doi.org/10.1135/cccc20000227
Kivala, M., Cibulka, R., & Hampl, F. (2006). Cleavage of 4-nitrophenyl diphenyl phosphate by isomeric quaternary pyridinium ketoximes – how can structure and lipophilicity of functional surfactants influence their reactivity in micelles and microemulsions? Collect. Czech. Chem. Comm., 71(11-12), 1642–1658. https://doi.org/10.1135/cccc20061642
Simanenko, Yu.S., Karpichev, Eu.A., Prokop'eva, T.M., Panchenko, B.V., & Bunton, C.A. (2001). Micelles of an oxime functionalized imidazolium surfactant. Reactivities at phosphoryl and sulfonyl groups. Langmuir, 17(3), 581–582. https://doi.org/10.1021/la001327g
Moss, R.A., & Ganguli, S. (1989). Iodosobenzoate-functionalized surfactant vesicles: adjustable reactivity in reactive phosphate cleavage. Tetrahedron Lett., 30(16), 2071–2074. https://doi.org/10.1016/S0040-4039(01)93714-1
Moss, & R.A., Zhang, H. (1993). Toward a broad spectrum decontaminant for reactive toxic phosphates/phosphonates: N-alkyl-3-iodosopyridinium-4-carboxylates. Tetrahedron Lett., 34(39), 6225–6228. https://doi.org/10.1016/S0040-4039(00)73716-6
Prokop’eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Serdyuk, A.A., Turovskaya, M.K., & Razumova, N.G. (2017). Reactivity of co-micellar systems based on dimeric functionalized tetraalkylammonium surfactant in phosphoryl and sulfonyl group transfer processes. Russ. J. Org. Chem. 53(4), 510–513. https://doi.org/10.1134/S1070428017040029
Terrier, F., Rodríguez-Dafonte, P., Le Guével E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem. 4(23), 4352–4363. https://doi.org/10.1039/b609658c
Senatore, L., Ciuffarin, E., Fava, A., & Levita, G. (1973). Nucleophilic substitution at sulfur. Effect of nucleophile and leaving group basicity as probe of bond formation and breaking. J. Am. Chem. Soc., 95(9), 2918–2922. https://doi.org/10.1021/ja00790a031
Hupe, D.J., & Jencks, W.P. (1977). Nonlinear Structure-Reactivity Correlations. Acyl Transfer between Sulfur and Oxygen Nucleophiles. J. Am. Chem. Soc., 99(2), 451–464. https://doi.org/10.1021/ja00444a023
Jencks, W.P., Brant, S.R., Gandler, J.R., Fendrich, G., & Nakamura, C. (1982). Nonlinear Bronsted Correlations: The Roles of Resonance, Solvation and Changing Transion-State Structure. J. Am. Chem. Soc., 104(25), 7045–7051. https://doi.org/10.1021/ja00389a027
Simanenko, Yu.S., Prokopeva, T.M., Savyolova, V.A., Zakhalichnaya, L.P., Belousova, I.A., Popov, A.F., & Sakhulin, G.S. (1989). Nucleophilic substitution at tetracoordinated sulfur atom. III. Reactivity of anionic oxygen-containing nucleophiles - arylate and alcoholate ions. Organic Reactivity, 26(1-2), 28–54. https://dspace.ut.ee/handle/10062/54382
Savyolova, V.A., Karpichev, Eu.A., Simanenko, Yu.S., Prokop’eva, T.M., Lobachev, V.L., & Belousova, I.A. (1996), Nucleophilic substitution at tetracoordinated sulfur. IV. Reactivity of anionic oxygen nucleophiles. Russ. J. Org. Chem., 32(4), 551–560.
Epstein, J., Cannon, P.L., Michel, H.O., Hackley, B.E., & Mosher, W.A. (1967). Charge effect in nucleophilic displacement reactions. J. Am. Chem. Soc., 89(12), 2937–2943. https://doi.org/10.1021/ja00988a023
Kumar, B., Tikariha, D., Ghosh, K.K., Barbero, N., & Quagliotto P. (2013). Kinetic study on effect of novel cationic dimeric surfactants for the cleavage of carboxylate ester. J. Phys Org. Chem., 26(8), 626–631. https://doi.org/10.1002/poc.3141
Geng, Y., Romsted, L.S., & Menger, F. (2006). Specific ion pairing and interfacial hydration as controlling factors in gemini micelle morphology. Chemical trapping studies. J. Am. Chem. Soc., 128(2), 492–501. https://doi.org/10.1021/ja056807e
Morales-Rojas, H., & Moss, R.A. (2002). Phosphorolytic Reactivity of o-Iodosylcarboxylates and Related Nucleophiles. Chem. Rev., 102(7), 2497–2522. https://doi.org/10.1021/cr9405462
Pang, Q.-H., Zang, R.-R., Kang, G.-L., Li, J.-M., Hu W., Meng X.-G., & Zeng, X.-C. (2006). Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Gemini Surfactants with Different Hydrophobic Tail Groups. J. Dispersion Sci. Technol., 27(5), 671–675. https://doi.org/10.1080/01932690600660541
Oda, R., Huc, I., & Candau, S.J. (1997). Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chem. Commun., 21(21), 2105–2106. https://doi.org/10.1039/a704069e
Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications / Ed. by R. Zana, J. Xia. – N.Y.: Marcel Dekker, 2004. P. 331.
Copyright (c) 2021 Т.М. Прокопьева, А.Б. Миргородская, И.А. Белоусова, Т.М. Зубарева, М.К. Туровская, Б.В. Панченко, Н.Г. Разумова, Т.С. Гайдаш, В.А. Михайлов
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.