Гибридный фотокатализатор нано-диоксид титана/диатомит для удаления токсичных органических загрязнителей из воды с помощью эффективных окислительных процессов (АОPs)

  • Т. Я. Дацко Институт прикладной физики Академии наук Молдовы, г. Кишинев, Республика Молдова https://orcid.org/0000-0003-3411-9969
  • В. И. Зеленцов Институт прикладной физики Академии наук Молдовы, г. Кишинев, Республика Молдова https://orcid.org/0000-0003-2057-4979
Ключевые слова: диоксид титана, диатомит, эффективные окислительные процессы, фотокатализ, фенол, минерализация, очистка воды

Аннотация

В статье представлены результаты изучения фотокаталитической активности гибридной каталитической системы диатомит/диоксид титана, представляющей собой композит на основе наноразмерного диоксида титана, привитого на поверхность диатомита, которая была применена для разложения фенола в водном растворе под действием УФ излучения, как пример эффективных окислительных процессов типа AOPs (Advanced Oxidation Processes). Катализатор был синтезирован методом модифицированного гетерогенного гидролиза в присутствии диатомита с использованием четыреххлористого титана в качестве прекурсора диоксида титана. Фотокатализатор показал высокую активность в разложении фенола в водном растворе: так, степень деградации фенола достигала 90% в течение 180 мин процесса в зависимости от исходной концентрации загрязняющего вещества. Кинетика процесса фоторазложения хорошо описывается моделью адсорбции Ленгмюра-Хиншельвуда. Полученный композитный катализатор при дозе 2 г/л и исходном содержании фенола 10 г/л удаляет загрязнитель из водного раствора, достигая значений ПДК по фенолу в сточных водах (~5 мг/л) в течение 54 мин фотокатализа.

Литература

Chong, M.N., Jin, B., Chow, C.W.K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 4(4), 2997 - 3027. https://doi.org/10.1016/j.watres.2010.02.039

Oppenländer, T. (2003). Photochemical Purification of Water and Air. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/9783527610884

Cuerda-Correa, E.M., Alexandre-Franco, M.F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, 12(102), 1 - 52. https://doi.org/10.3390/w12010102

Machulek, A., Oliveira, S.C., Osugi, M.E., Ferreira, V.S., Quina, F.H., Dantas, R.F., Oliveira, S.L., Casagrande, G.A., Anaissi, F.J., Silva, V.O., Cavalcante, R.P., Gozzi, F., Ramos, D.D., da Rosa, A.P.P., Santos, A.P.F., de Castro, D.C., & Nogueira. J.A. (2013). Application of different advanced oxidation processes for the degradation of organic pollutants. In: Organic pollutants - monitoring, risk and treatment. Chapter 6, pp. 141 - 166. http://dx.doi.org/10.5772/53188

Fernandes, A., Makoś, P., Wang, Z., & Boczkaj, G. (2020). Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chemical Engineering Journal, 391, 123488. https://doi.org/10.1016/j.cej.2019.123488

Gilmour, C.R. (2012). Water Treatment Using Advanced Oxidation Processes: Application Perspectives (Ph.D. dissertation). The University of Western Ontario. Electronic Thesis and Dissertation Repository. 836. http://ir.lib.uwo.ca/etd/836 (accessed 20.10.2020).

Stasinakis, A.S. (2008). Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST Journal, 10(3), 376 - 385. https://doi.org/10.30955/gnj.000598

Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53, 51 - 59. https://doi.org/10.1016/S0920-5861(99)00102-9

Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical Engineering Journal, 284, 582 - 598. https://doi.org/10.1016/j.cej.2015.09.001

Herrmann, J.-M. (1999). Water treatment by heterogeneous photocatalysis. Catalytic Science Series Environmental Catalysis, 171 - 194. https://doi.org/10.1142/9781848160613_0009

Ahmed, S.N., & Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 29(34), 1 - 31. https://doi.org/10.1088/1361-6528/aac6ea

Zhao, J. (2012). Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors. Procedia Environmental Sciences, 12, 445 - 452. https://doi.org/10.1016/j.proenv.2012.01.302

Besov, A.S., Krivova, N.A., Vorontsov, A.V., Zaeva, O.B., Kozlov, D.V., Vorozhtsov, A.B., Parmon, V.N., Sakovich, G.V., Komarov, V.F., Smirniotis, P.G., & Eisenreich, N. (2010). Air detoxification with nanosize TiO2 aerosol tested on mice. Journal of Hazardous Materials, 173, 40 - 46. https://doi.org/10.1016/j.jhazmat.2009.08.042

Bhadiyadra, J.G., & Vaghani, M.V. (2015). A review on applicability of photocatalyst titanium dioxide for treatment of greywater. Int. Journal of Engineering Research and Applications, 5(3), 102 - 105.

Favier, L., Harja, M., Simion, A.I., Rusu, L., Pacala, M.L., & Bouzaza, A. (2016). Advanced oxidation process for the removal of chlorinated phenols in aqueous suspensions. Journal of Environmental Protection and Ecology, 17(3), 1132 - 1141.

Sanchez, M., Rivero, M.J., & Ortiz, I. (2010). Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination, 262(1-3), 141 - 146. https://doi.org/10.1016/j.desal.2010.05.060

Lazar, M.A., Varghese S., & Nair, S.S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts, 2, 572 - 601. https://doi.org/10.3390/catal2040572

Mondal, K., & Sharma, A. (2014). Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – A mini-review. In: Nanoscience & Technology for Mankind. Chapter 5, pp. 36 - 72, The National Academy of Sciences India (NASI).

Chis, C., Evstratov, A., Malygin, A., Malkov, A., Gaudon, P., &Taulemeusse, J.-M. (2007). Amorphous composite photocatalysts: a new generation of active materials for environment application. Carpth. J. of Earth and Environmental Sciences, 2(2), 21 - 28.

Song, H., Jiang, H., Liu, X., & Meng, G. (2006). Nano TiO2 deposited on crude mineral and the photoactivity to the degradation of chloroform. American Journal of Environmental Science, 2(2), 60 - 65. https://doi.org/10.3844/ajessp.2006.60.65

De Witte, K., Meynen, V., Mertens, M., Lebedev, O.I., Van Tendeloo, G., Sepulveda-Escribano, A., Rodriguez-Reinoso, F., Vansant, E.F., & Cool, P. (2008). Multi-step loading of titania on mesoporous silica: Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs. Applied Catalysis B: Environmental, 84, 125 - 132. https://doi.org/10.1016/j.apcatb.2008.03.015

Pucher, P., Benmami, M., Azouani, R., Krammer, G., Chhor, K., Bocquet, J.-F., & Kanaev, A.V. (2007). Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 332(2), 297 - 303. https://doi.org/10.1016/j.apcata.2007.08.031

Wang, B., Zhang, G., Sun, Z., & Zheng, S. (2014). Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation. Powder Technology, 262, 1 - 8. https://doi.org/10.1016/j.powtec.2014.04.050

Kibanova, D., Sleiman, M., Cervini-Silva, J., & Destaillats, H. (2012). Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. J. Hazard. Mater., 211–212, 233 - 239. https://doi.org/10.1016/j.jhazmat.2011.12.008

Sun, Z., Bai, C., Zheng, S., Yang, X., & Frost, R.L. (2013). A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Appl. Catal., A, 458, 103 - 110. https://doi.org/10.1016/j.apcata.2013.03.035

Yuan, P., Yang, D., Lin, Z., He, H., Wen, X., Wang, L., & Deng, F. (2006). Influences of pretreatment temperature on the surface silylation of diatomaceous amorphous silica with trimethylchlorosilane. Journal of Non-Crystalline Solids, 352(36-37), 3762 - 3771. https://doi.org/10.1016/j.jnoncrysol.2006.05.035

Wang, B., de Godoi, F.C., Sun, Z., Zeng, Q., Zheng, S., &Frost R.L. (2015). Synthesis, characterization and activity of an immobilized photocatalyst: Natural porous diatomite supported titania nanoparticles Journal of Colloid and Interface Science, 438, 204 - 211. https://doi.org/10.1016/j.jcis.2014.09.064

Su, Y.Y., Yang, P.S., & Zhu, X.B. (2009). Preparation, characterization and photocatalytic performance of nano-TiO2/diatomite. Advanced Materials Research, 79-82, 357 - 360. https://doi.org/10.4028/www.scientific.net/AMR.79-82.357

Jia, Y., Hana, W., Xiong, G., & Yang, W. (2008). Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 323, 326 - 331. https://doi.org/10.1016/j.jcis.2008.04.020

Toster, J., Harnagea, C., Iyer, K.S., Rosei, F. & Raston, C.L. (2012). Controlling anatase coating of diatom frustules by varying the binding layer. CrystEngComm, 14(10), 3446 - 3450. https://doi.org/10.1039/C2CE06648C

Zhang, Y., Li, J., Niu, F., Sun, J., Dou, Y., Liu, Y., Su, Y., Zhou, B., Xu, Q., & Yang, Y. (2014). Comparison of a novel TiO2/diatomite composite and pure TiO2for the purification of phosvitin phosphopeptides. Journal of Chromatography B, 960, 52 - 58. https://doi.org/10.1016/j.jchromb.2014.03.038

Hsien, K.-J., Tsai, W.-T., & Su T.-Y. (2009). Preparation of diatomite-TiO2 composite for photodegradation of bisphenol-A in water. J. Sol-Gel Sci. Technol., 51, 63 - 69. https://doi.org/10.1007/s10971-009-1921-6

Liu, Y., Zheng S., Du, G., Shu, F., & Chen J. (2009). Photocatalytic degradation property of nano TiO2/diatomite for Rodamine B dye wastewater International Journal of Modern Physics, B, 23(6, 7), 1683 - 688. https://doi.org/10.1142/S0217979209061469

Xia, Y., Li, F., Jiang, Y., Xia, M., Xue, B., & Li, Y. (2014). Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite. Appl. Surf. Sci., 303, 290 - 296. https://doi.org/10.1016/j.apsusc.2014.02.169

Gao, R., Sun, Q., Fang, Z., Li, G., Jia, M., & Hou, X. (2018). Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation. International Journal of Minerals, Metallurgy and Materials, 25(1), 73 - 79. https://doi.org/10.1007/s12613-018-1548-0

Liu, X., He, Y., Yang, B., Yan, Q., & Yang, J. (2020). Highly efficient photo-degradation of gaseous organic pollutants catalyzed by diatomite-supported titanium dioxide. Catalysts, 10, 380; https://doi.org/10.3390/catal10040380

Ilia, I.K., Stamatakis, M.G., & Perraki, T.S. (2009). Mineralogy and technical properties of clayey diatomites from north and central Greece. Cent. Eur. J. Geosci.., 1(4), 393 - 403. https://doi.org/10.2478/v10085-009-0034-3

Mohamedbakr, H., & Burkitbaev, M. (2009). Elaboration and characterization of natural diatomite in Aktyubinsk/Kazakhstan. The Open Mineralogy Journal, 3, 12 - 16. DOI: 10.2174/1874456700903010012

Korunic, Z. (1998). Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res., 34, 87 - 97. https://doi.org/10.1016/S0022-474X(97)00039-8

Bakr, H.E.G.M.M. (2010). Diatomite: its characterization, modifications and applications. Asian J. Mater. Sci., 2(3), 121 - 136. DOI: 10.3923/ajmskr.2010.121.136

Goren, R., Baykara, T., & Marsoglu M. (2002). Effects of purification and heat treatment on pore structure and composition of diatomite. Br. Ceramic Trans., 101, 177 - 180. https://doi.org/10.1179/096797802225003361

Anku, W.W., Mamo, M.A., & Govender, P.P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In: Phenolic Compounds - Natural Sources, Importance and Applications. Chapter 7, pp. 419 - 443. DOI: 10.5772/66927

Auriol, M., Filali-Meknassi, Y., Tyagi, R.D., Adams, C.D., & Surampalli, R.Y. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem., 41, 525 - 539. https://doi.org/10.1016/j.procbio.2005.09.017

European Union. The list of priority substances in the field of water policy and amending directive, Council directive 2455/2001/ECC. Official Journal of the European Communities L331, 20 November 2001, pp. 1 - 5. http://www.fao.org/faolex/results/details/es/c/LEX-FAOC127344 (accessed 20.10.2020).

Environment Canada. The Second Priority Substances List (PSL2) of the Canadian

Environmental Protection Act (CEPA). Gatineau, Canada: Environment Canada, 1995. https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/substances-list/priority-list.html (accessed 20.10.2020).

United States Environmental Protection Agency. EPA Priority-pollutant-list, 1977. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf (accessed 20.10.2020).

World Health Organization. Phenol: Environmental Health Criteria 161. Geneva, Switzerland: World Health Organization, 1994. http://www.inchem.org/documents/ehc/ehc/ehc161.htm (accessed 20.10.2020).

Ghogomu, J.N., Noufame, D.T., & Tamungang E.B.N. (2014). Adsorption of phenol from aqueous solutions onto natural and thermally modified kaolinitic materials. Int. J. Biol. Chem. Sci., 8(5), 2325 - 2338. DOI: 10.4314/ijbcs.v8i5.35

Tzvetkova, P.G., Nickolov, R.N., Tzvetkova, C.T., Bozhkov, O.D., & Voykova, D.K. (2016). Diatomite/carbon adsorbent for phenol removal. Journal of Chemical Technology and Metallurgy, 51(2), 202 - 209.

Asgari, G., Mohammadi ,A.S., Ebrahimi, A., & Hosseinzadeh, E. (2013). Adsorption of phenol from aqueous solution by modified zeolite with FeCl3. Int. J. Env. Health Eng., 1(7), 1 - 6. DOI:10.4103/2277-9183.107915

Issabayeva, G., Hang, S.Y., Wong, M.C., & Aroua, M.K. (2017). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in Chemical Engineering, 34(6), 855 - 873. https://doi.org/10.1515/revce-2017-0007

Musleh, S.M., Zaitoon, B.A., Yousef, R.I., & Ibrahim, K.M. (2014). Removal of phenols from aqueous solutions using bi modified Jordanian diatomaceous clay. Asian Journal of Science and Technology, 5(3), 214 - 220.

Reemtsma, T., & Jekel, M. (1997). Dissolved organics in tannery wastewaters and their alteration by a combined anaerobic and aerobic treatment. Water Research, 31, 1035 - 1046. https://doi.org/10.1016/S0043-1354(96)00382-X

Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Curr. Pollution Rep., 2, 157 - 167. https://doi.org/10.1007/s40726-016-0035-3

Veeresh, G.S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Res., 39, 154 - 170. https://doi.org/10.1016/j.watres.2004.07.028

Busca, G., Berardinelli, S., Resini, C., & Arrigi, L. (2008). Technologies for the removal of phenol from fluid streams. A short review of recent developments. J. Hazard. Mater., 160, 265 - 288. https://doi.org/10.1016/j.jhazmat.2008.03.045

Hobson, M.J., & Millis, N.F. (1990). Chemostat studies of a mixed culture growing on phenolics. Res. J. Water Poll. Control Fed., 62, 684 - 691. https://www.jstor.org/stable/25043899

Eriksson, E., Baun, A., Mikkelsen, P.S., & Ledin, A. (2007). Risk assessment of xenobiotics in stormwater discharged to Harrestup Ao, Denmark. Desalination, 215, 187 - 197. https://doi.org/10.1016/j.desal.2006.12.008

Kulkarni, S.J., & Kaware, D.J.P. (2013). Review on research for removal of phenol from wastewater. International Journal of Scientific and Research Publications, 3, 1 - 4.

Bodzek, M., & Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol. Chem. Eng. S., 19(4), 489 - 512. https://doi.org/10.2478/v10216-011-0036-5

Liu, X., Liu, Y., Lu, S., Guo, W. & Xi, B. (2018). Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem. Eng. J., 350, 131 – 147. https://doi.org/10.1016/j.cej.2018.05.141

Nguyen, A.T., Hsieh, C.-T., & Juang, R.-S. (2016). Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation. Journal of the Taiwan Institute of Chemical Engineers, 62, 68 - 75. https://doi.org/10.1016/j.jtice.2016.01.012

Choquette-Labbé, M., Shewa, W.A., Lalman J.A., Lalman, J.A.,& Shanmugam, S.R. (2014). Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology. Water, 6, 1785 - 1806. https://doi.org/10.3390/w6061785

Shawabkeh, R., Khashman, O., & Bisharat, G. (2010). Photocatalytic degradation of phenol using Fe-TiO2 by different illumination sources. International Journal of Chemistry, 2(2), 10 - 18. DOI: 10.5539/ijc.v2n2p10

Datsko, T.Ya., & Zelentsov, V.I. (2019). Nanoscale-TiO2/diatomite composite: synthesis, structure, and thermal stability. Surface Engineering and Applied Electrochemistry, 55(6), 655 - 666. https://doi.org/10.3103/S1068375519060036

Control methods. Chemical factors. Determination of chemical compounds in biological environments. Collection of guidelines. MUK 4.1.763 - 4.1.779-99. Ministry of Health of Russia. Moscow, 2000. https://meganorm.ru/Data2/1/4293743/4293743467.htm (accessed 20.10.2020) (in Russ.).

Tao, Y., Cheng, Z., Ting, K., & Yin, X.J. (2013). Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. Journal of Catalysts, 2013, 1 - 6. https://doi.org/10.1155/2013/364275

Wong, C.L., Tan, Y.N., & Mohamed, A.R. (2011). Photocatalytic degradation of phenol using immobilized TiO2 nanotube photocatalysts. Journal of Nanotechnology, 12, 1 - 9. https://doi.org/10.1155/2011/904629

Ishiki, R.R., Ishiki, H.M., & Takashima, K. (2005). Photocatalytic degradation of imazethapyr herbicide at TiO2/H2O2 interface. Chemosphere, 58(10), 1461 - 1469, https://doi.org/10.1016/j.chemosphere.2004.09.094

Merabet, S., Bouzaza, A., & Wolbert, D. (2009). Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process - Influence of some operating parameters. Journal of Hazardous Materials, 166(2-3), 1244 - 1249. https://doi.org/10.1016/j.jhazmat.2008.12.047

Sahoo, C., Gupta, A.K., & Pal, A. (2005). Photocatalytic degradation of Methyl Red dye in aqueous solution under uv irradiation using Ag+-doped TiO2. Desalination, 181, 91 - 100. https://doi.org/10.1016/j.desal.2005.02.014

Опубликован
2020-12-26
Как цитировать
Дацко, Т. Я., & Зеленцов, В. И. (2020). Гибридный фотокатализатор нано-диоксид титана/диатомит для удаления токсичных органических загрязнителей из воды с помощью эффективных окислительных процессов (АОPs). Химическая безопасность, 4(2), 101 - 116. https://doi.org/10.25514/CHS.2020.2.18007
Раздел
Технологии ликвидации источников химической опасности