
  ХИМИЧЕСКАЯ БЕЗОПАСНОСТЬ / CHEMICAL SAFETY SCIENCE, 2020, 4, (2), 101 – 116

Technologies for elimination of chemical hazards 

UDC 546.824-31:544.723.54:544.526.5 DOI: 10.25514/CHS.2020.2.18007 

Hybrid nano-titanium dioxide/diatomite photocatalyst for advanced 

oxidation processes (AOPs) mediated removal of toxic organic 

pollutants 

Tatiana Ya. Datsko , and Vyacheslav I. Zelentsov 

Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova, 

e-mail: datsko.tatiana@yandex.ru

Received: October 20, 2020, Revised: November 18, 2020, Accepted: December 01, 2020 

Abstract – Photocatalytic activity of the hybrid photocatalyst (diatomite/titanium dioxide, DTD) 

based on nano-sized titanium dioxide grafted on the diatomite surface was tested in advanced 

oxidation processes (AOPs) by measuring degradation of phenol in model contaminated aqueous 

solutions under UV illumination. The hybrid catalytic system was synthesized via a modified 

heterogeneous hydrolysis procedure in the presence of diatomite by using titanium tetrachloride as 

titania precursor. The photocatalyst showed high activity in photocatalytic decomposition of phenol 

in aqueous solution. The degradation degree was up to 90% in 180 min depending on initial phenol 

concentration. The experimental results obtained for the photodegradation kinetics of phenol 

showed a good agreement with the Langmuir-Hinshelwood model of adsorption with the external 

diffusion as the determining step of the process. The prepared DTD composite at a loading of 2 g/L 

was able to mineralize phenol under UV irradiation in aqueous solution at initial 

phenol concentration of 10 g/L within 54 min of photocatalytic process up to the maximum 

allowable concentration level (MAC) for phenol in wastewater (~5 mg/L). 

Keywords: titanium dioxide, diatomite, AOPs, photocatalysis, phenol, mineralization, water 

treatment. 
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Аннотация – В статье представлены результаты изучения фотокаталитической активности 

гибридной каталитической системы диатомит/диоксид титана, представляющей собой 

композит на основе наноразмерного диоксида титана, привитого на поверхность диатомита, 

которая была применена для разложения фенола в водном растворе под действием УФ 

излучения, как пример эффективных окислительных процессов типа AOPs (Advanced 

Oxidation Processes). Катализатор был синтезирован методом модифицированного 

гетерогенного гидролиза в присутствии диатомита с использованием четыреххлористого 

титана в качестве прекурсора диоксида титана. Фотокатализатор показал высокую 

активность в разложении фенола в водном растворе: так, степень деградации фенола 

достигала 90% в течение 180 мин процесса в зависимости от исходной концентрации 

загрязняющего вещества. Кинетика процесса фоторазложения хорошо описывается моделью 

адсорбции Ленгмюра-Хиншельвуда. Полученный композитный катализатор при дозе 2 г/л и 

исходном содержании фенола 10 г/л удаляет загрязнитель из водного раствора, достигая 

значений ПДК по фенолу в сточных водах (~5 мг/л) в течение 54 мин фотокатализа. 

 

Ключевые слова: диоксид титана, диатомит, эффективные окислительные процессы, 

фотокатализ, фенол, минерализация, очистка воды. 

________________________________________________________________________________ 

 

INTRODUCTION 

In recent decades, the chemical safety of drinking water contaminated by the 

presence of organic pollutants is increasingly becoming one of the major concerns 

worldwide. Currently available water treatment technologies, such as adsorption or 

coagulation are dealing with simple concentrating contaminants present in water by 

transferring them from one phase to another, but eventually the pollutants still remain 

intact and are scarcely ‘eliminated’ or ‘destroyed’ completely. Other traditional water 

treatment procedures such as sedimentation, filtration, chemical and membrane 

technologies are associated with high operating costs and can lead to the formation of 

toxic secondary pollutants in the environment. 

Alternatively, photochemical technologies are applied which use chemical 

oxidants in the presence of a suitable catalyst and/or ultraviolet light to oxidize or 

degrade the pollutants involving a wide range of chemical structures and resulting in 

their conversion into less toxic substances which are more readily biodegradable. 

These technologies, known as advanced oxidation processes (AOPs) [1–4], are being 

extensively explored, particularly, for degradation of various types of pollutants of 

industrial wastewater [5–7]. 

AOPs procedures can be especially useful for the treatment of wastewater 

containing highly toxic organic compounds and pollutants, which can’t be removed 

using biological procedures, except for water treatment from bacteria, since bacteria 

are able to be adapted to almost all kinds of toxic environments. AOPs are driven by 

the formation of highly reactive species, mainly hydroxyl radicals that are capable of 

breaking down pollutants through oxidation reactions. The AOPs-generated hydroxyl 

radicals quickly and nonselectively react with organic compounds, which results in 

complete mineralization of pollutants to carbon dioxide, water and inorganic salts, or 

at least to the formation of non-hazardous organic compounds [8, 9].  

One of the most important types of AOPs is heterogeneous photocatalytic 

oxidation, commonly known as photocatalysis [10, 11]. With this approach, harmful 

organic substances are decomposed in the presence of a catalyst and ultraviolet (UV) 
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irradiation without generating secondary harmful pollutants. The photocatalyst is 

activated by the absorption of photon and is capable of accelerating chemical reaction 

without consuming from another energy source. 

In general, photocatalysis proceeds in the following five stages: 

1. Supply of the reactants from the bulk solution to the catalyst surface; 

2. Adsorption of reactants on the surface; 

3. Reaction of adsorbed reactants on the catalyst surface; 

4. Desorption of reaction products; 

5. Removal of the products from the liquid/solid interface. 

In aqueous media, the photocatalytic reaction (stage 3) is mostly the 

photocatalytic degradation of organic pollutants in the presence of a semiconductor as 

the photocatalyst, more often TiO2 [12, 13]. 

At present, AOP-based technology of UV/TiO2 photocatalytic oxidation is 

gradually receiving greater attention in water treatment studies [14–16]. The recent 

huge research interest in using TiO2 as a photocatalyst can be attributed to its 

excellent ability to completely degrade a wide range of organic pollutants to CO2 plus 

H2O due to its low cost, chemical stability and high efficiency properties [17, 18].  

Laboratory studies on photocatalysis are typically performed using nano-sized 

catalyst suspended in the reactor. The catalyst in these experiments is uniformly 

dispersed in the solution as it passes through the reactor. The uniform catalyst 

distribution provides very high surface area to volume ratios with lower mass transfer 

limitations. 

However, titania nanoparticles (TNPs) show certain shortcomings in terms of 

large-scale practical application and commercial profit, which can result in a low 

photocatalytic efficiency and higher cost: strong tendency to aggregate, difficulties 

with TNPs recovery from the solution after treatment and low adsorption properties. 

To overcome these shortcomings, many researchers have been focused recently on 

immobilizing TNPs on supports having high surface area and excellent adsorption 

capacity [19–24]. This approach may improve the TNPs distribution in suspension 

which facilitates adsorption and concentration of target substances.  

Recently, porous non-metal minerals have been proposed as supports of TiO2-

based photocatalysts, such as perlite, zeolite and others due to their low costs. 

The support must meet the following requirements: high surface area, sufficient 

thermal resistance and mechanical stability, inexpensiveness, conformability to 

reactor configuration, and usability for coating process.  

In this context, diatomite can be one of the most suitable supports for titania 

nanoparticles due to its unique physicochemical properties [25–36]. Diatomite (or 

diatomaceous earth) is a mineral deposit of diatomaceous algae, which had been 

accumulated starting from the Miocene period. Amorphous silica is the main 

ingredient of diatomite, which is usually accompanied by variable quantities of other 

materials (metal oxides, clays, salts (mainly carbonates), and organic matter). 

Diatomite is abundant in many locations across the globe and exhibits unique 

physical characteristics, such as high permeability and porosity (35–65%), small 

particle size, low thermal conductivity and density along with high surface area [37–

39].  
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Thus, a combination of diatomite and nano-sized titanium dioxide can yield a 

photocatalyst with high values of specific surface and photocatalytic activity. 

Phenols are important chemical compounds in terms of their widespread use in a 

variety of manufacturing processes. For example, phenol is commonly used in the 

production of phenolic resins, bisphenol A, caprolactam, and chlorophenols, such as 

pentachlorophenol. However, these chemicals pose a serious threat to the 

environment, water supply and human health as a result of their inertness, toxicity, 

ability to destroy the endocrine system and carcinogenic behavior [40, 41]. The 

European Union, United States and Canada included several types of phenols on the 

list of priority pollutants [42–44].  

The minimum allowable concentration of phenol in wastewater is 5 mg/L, as 

prescribed by the World Health Organization (WHO) [45]. 

Therefore, wastewater contaminated with phenols and similar toxic compounds 

requires special treatment prior to its discharge into water bodies. 

Phenols can be removed from water by means of physical processes, such as 

flocculation, precipitation, adsorption with activated granular carbon, application of 

mineral sorbents [46–50] or reverse osmosis [51, 52]. Enzymes and microorganisms 

have also been used to eliminate phenols [53–56]. 

However, the application of these processes is limited due to the high cost of 

the catalyst and the short-term catalytic activity [52]. Biological processes have also 

been applied to remove phenolic compounds. However, in many cases, phenols 

inhibit microorganisms to the minimum levels [52, 57]. 

Advanced oxidative processes (AOPs) have been successful in removing such 

non-easy degradable contaminants as phenol since they can achieve complete 

oxidation [58–64]. 

This work is focused on studying photodegradation of such a toxic substance as 

phenol from aqueous solution with the help of preliminarily prepared photocatalyst 

based on nanodimensional TiO2 deposited on the surface of diatomite (diatomite/titan 

dioxide, DTD) under UV illumination. The substantiation of the synthesis method 

and a detailed characterization of physicochemical and adsorption and structural 

properties of the obtained composite are described in our previous study [65]. 

The removal efficiency of phenol from aqueous solution has been studied as a 

function of catalyst loading, pH of solution, phenol initial concentration using two 

types of procedures: 1) under dark conditions (adsorption), and 2) under UV 

illumination (photocatalytic degradation). 
 

EXPERIMENTAL 

Samples of the synthesized nanocomposite DTD (20% TiO2) were used as 

adsorbents. DTD was obtained via heterogeneous hydrolysis of TiCl4 in the presence 

of a suspension of diatomite. The diatomite used in the study was supplied from the 

deposits of Vyshkautsy village in the Orgeev region in Moldova after an appropriate 

purification.  

Titanium(IV) chloride (TiCl4, 99.9%), ammonia (NH4OH, 25%) were purchased 

from Sigma Aldrich. 

104



DATSKO et al. 

 

 

Typical DTD preparation procedure: 2.0 g of purified diatomite was dispersed in 50 

mL of TiCl4 solution of required concentration to obtain TiO2 content of about 20 

wt.% under continuous of stirring for 30 min; next, drop by drop NH4OH solution 

was added until the adjustment of the required pH value and left for stirring within 60 

min. 

After that, the mixture was centrifuged and the precipitate was separated from 

the centrifugate, washed with distilled water until the negative reaction for chloride 

ions was observed, and then dried for 12 h at ambient temperature followed by 4 h at 

110°С for 4 h, and further calcined at 450°C for 2 h. The samples were stored in a 

desiccator at room temperature before their further research and processing. The 

composition of the starting diatomite and DTD composite are presented in Table 1. 

 
Table 1. Composition of the starting diatomite and DTD catalyst 

according to atomic absorption analysis data 

 

Sample 

Composition, % 

SiO2 TiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 
Loss on 

ignition 
Σ, % 

Din 79.8 0.11 3.44 0.82 1.46 1.30 0.55 0.35 12.01 100.01 

DTD 56.0 19.20 2.59 0.53 0.46 0.62 0.25 0.23 10.20 100.14 

Material Characterization 

Crystal structure, chemical composition and adsorption-structure properties 

(specific surface area, adsorption pore volume, effective pore radius) of 

nanocomposite and its components were determined with XRD, XPS and EDX 

analyses and low temperature adsorption of nitrogen. The specific surface area (Ssp), 

adsorption pore volume (Vs) and effective pore radius (ref) have been calculated by 

BET method from nitrogen adsorption - desorption isotherms.  

The crystallite size of nano TiO2 particles (anatase) was estimated by applying 

the Debye–Scherer equation. The data are shown in Table 2. 

 
Table 2. The adsorption–structural properties of the DTD composite and its components 

Sample % of TiO2 S, m2/g Vs, cm3/g Vma, cm3/g ref, Å rma, Å D part., nm 

Din 0 36.449 0.136 1.30 17.40 722 - 

DTD 19.2 88.1 0.256 0.879 40.02 200 7.74 

TiO2 100 128.447 0.492 0.276 36.58 43 26.02 

    Detailed characteristics are presented in the work [65] 

 

Phenol (C6H5OH, 96%), hydrochloric acid (HCl, 35 wt.%) and sodium 

hydroxide (NaOH) of analytical grade (for pH adjusting) were purchased from 

Aldrich (Germany). 

For the preparation of solutions, double distilled water was used. All the 

experiments on the adsorption study were carried out under the following conditions: 

Into 50.0 mL of aqueous phenol solution with an appropriate initial 

concentration 0.1 g of the sorbent sample was added with constant stirring for 
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equilibration period of time. The amount of adsorbed phenol, a, mg/g was determined 

using the equation: 

 0
,

e

e

C C
a

m

 
  

where C0 and Ce, mg/L – initial and equilibrium phenol concentration in solution, 

respectively; v, L – the solution volume; m, g – the sorbent weight. 

After adsorption, the solid phase was separated from liquid by centrifugation. 

Analysis of all solutions for phenol content was carried out spectrophotometrically 

with diazotized para-nitro aniline method according to the known procedure of 

determination of optical density at the characteristic wavelength of 540 nm using 

two-beam spectrophotometer KFK-2 (PA ZOMZ, Russia) [66], pH of water solutions 

were measured using an ionometer I160-M (LLC Antech, Belarus).  

All the experiments were conducted in duplicate to verify the results 

reproducibility.  
 

RESULTS AND DISCUSSION 

Determination of optimal parameters of phenol adsorption by DTD 

Since the adsorption of a target compound plays a great role in photocatalytic 

degradation process, a series of experiments was firstly conducted in order to 

investigate adsorption of phenol elimination on DTD. The adsorption of phenol was 

studied depending on its initial concentration, pH of the suspension; sorbent dose, 

and process duration (adsorption kinetics). From experiments carried out in the dark, 

in the presence of DTD (data are not shown), the optimal parameters for adsorption 

of phenol by DTD were determined as follows: pH of solution 4.5; sorbent dose 

2 g/L; the optimum adsorption time at equilibrium – 180 min. 

These parameters were taken as the basis for further phenol photodegradation 

study. 

 

Photodegradation of phenol using DTD photocatalyst under UV irradiation 

The parameters of phenol photodegradation under the action of UV irradiation 

with DTD as a photocatalyst were studied as a function of the initial phenol 

concentration, pH of the solution, dose of photocatalyst, and duration of exposure to 

UV irradiation.  
 

Effect of initial phenol content 

The effect of the initial phenol concentration (C0) on the photocatalytic 

degradation of the pollutant was studied within the concentration range of 4–18 mg/L 

at a catalyst loading of 2 g/L. All the experiments were conducted for an irradiation 

time of 180 min at ambient temperature at pH = 4.5. 

The concentration range was chosen due to practical considerations (such 

concentrations are usually detected in environmental and waste waters). 

It was found that the efficient phenol degradation could be achieved over the 

whole investigated range (Fig. 1). 

As expected, the following effect of the initial pollutant concentration on the 

degree of photodestruction of the phenol was observed: the higher the initial 
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concentration, the lower the degree of phenol removal from the solution (Fig. 1). 

Precisely, after 10 min of UV irradiation an elimination yield of 47.9% was obtained 

for the initial phenol concentration of 4.96 mg/l compared to 16.9% for the 

concentration of 10.74 mg/L and only 8.7% for the initial phenol concentration of 

16.8 mg/L. This can be explained by the fact that with the increase in initial pollutant 

concentration the number of available sites on DTD surface is reduced due to the 

adsorption on the catalyst surface which leads to a slowing down in the light 

penetration affecting the hydroxyl radical generation and pollutant oxidation. 

Consequently, this results in a decrease in the pollutant removal [67]. 
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Fig. 1. Effect of initial concentration of phenol on degree of its photocatalytic destruction by 

applying DTD under UV irradiation (pH = 4.05; T = 20○C, catalyst dose = 2 g/L). 

 

Effect of pH of solution on phenol photodegradation on DTD  

The effect of pH on phenol photodegradation degree was studied in the pH 

range of 3.0–10.0 at phenol initial concentration of 10 mg/L. As can be seen from 

Fig. 2 (where the whole studied pH range is not shown), the pH of the solution 

greater than 4.2 does not significantly affect the degree of phenol elimination.  

The pH value of 4.5 was further applied to all the subsequent experiments on 

photodegradation of phenol with photocatalyst DTD to avoid the pH adjustment step. 

Photocatalyst dosage is another important parameter which can affect the 

pollutant degradation. Therefore, it was necessary to study its effect to optimize the 

photodegradation reaction and to avoid overuse of the catalyst. The experiments were 

carried out varying the loading of DTD from 0.5 to 4.0 g/L using the following 

conditions: pH = 4.5, initial phenol concentration of 10.74 mg /L, and irradiation time 

of 180 min. It can be seen from the data presented in Table 3 that the catalyst dosage 

plays a specific role in the process studied: photocatalytic degradation of the target 

compound is gradually increased with the increase of photocatalyst loading up to 2.0 

g/L. Further increase in catalyst loading results in decrease of phenol elimination 

degree.  
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Fig. 2. Dependence of degree of photodestruction of phenol using DTD under UV irradiation on pH 

of solution (initial phenol concentration 10 mg/L; catalyst loading 2 g/L; T = 20°C, t = 180 min). 

Effect of catalyst loading 
 

Table 3. Effect of DTD photocatalyst loading on phenol degradation degree 

 

Thus, 55.95% of pollutant are removed at the catalyst concentration of 2.0 g/L, but 

only 8.38% of elimination efficiency is achieved for catalyst concentration of 0.5 g/L, 

and 38.64% for dose of 1.5g/L. The increase in the degradation degree with the 

catalyst loading was reported to be associated with an increase in the active surface 

sites of photocatalyst [68, 69].  

We assume that the observed phenomenon is apparently due to the initial 

increase in the number of available photocatalytic sites with the increase of the 

catalyst dosage. Further on, the turbidity factor starts to be relevant, and the higher 

the DTD mass, the photocatalytic centers become less accessible for the photon 

absorption leading to a reduction of OH● radicals available for the photocatalytic 

reaction. A similar kind of effect was reported by other researchers studying 

photocatalytic degradation of organic compounds [68, 69]. 

To this end, an optimum photocatalyst concentration of 2 g/L and was applied 

for the rest of experiments.  
 

Kinetic study of phenol photocatalytic degradation 

Duration of the process for phenol degradation using the DTD catalyst under 

UV irradiation was studied to obtain the equilibration time value. 

Catalyst dose, g/L 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Phenol removal, % 8.38 29.32 38.64 55.95 53.44 39.48 25.74 16.76 
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Fig. 4 shows the dependence of the degree of phenol decomposition on the UV 

irradiation time. It can be seen, the duration of 180 min is enough to reach the 

equilibrium. Further increase of time is not accompanied by visible changes in the 

degree of phenol removal and is found to be unreasonable. 

The mechanism of phenol photodegradation on the DTD hybrid nanocomposite 

under UV irradiation was considered using the Langmuir-Hinshelwood model. 
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Fig. 3. Kinetics of phenol degradation on DTD photocatalyst under UV irradiation in aqueous 

solution (pH = 4.5; T = 20°C; catalyst loading 2g /L; Cin = 10 mg/L). 

 

For many organic compounds, the effect of their concentration in water on the 

photocatalytic decomposition reaction rate is often found to fit the Langmuir-

Hinshelwood (LH) kinetic model [70, 71]. 

The L-H model is described by the following equation: 
 

𝐶𝑒 = 𝐶𝑜 ∗ exp(−𝐾𝐿𝐻 ∗ 𝑡 + 𝐴), 
 

where Ce, mg/L, is phenol concentration at equilibrium; Co, mg/L, is the initial 

concentration of phenol; KLH is Langmuir-Hinshelwood’s constant; t, min, is reaction 

time; A is the coefficient of the equation.  

Fig. 4 represents the results of the corresponding nonlinear modeling using 

OriginPro 2015 soft. 

As can be seen from Fig. 4, the kinetics of phenol photodegradation is well 

described by the Langmuir-Hinshelwood model (with a correlation coefficient 

R2 = 0.9191) showing that the reaction belongs to the first order. However, it is 

difficult to draw a conclusion about the limiting stage from the available results, 

whether the kinetic area or the diffusion of the agents to the surface limits the 

reaction; some additional research is needed.  
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Fig. 4. Kinetics of phenol photodegradation using DTD nanocomposite; experimental data and data 

obtained by nonlinear modeling according to Langmuir-Hinshelwood model (Cin = 10.74, pH = 4.5; 

t = 120 min; T = 20°C, sorbent dosage 2 g/L). 

 

 

Efficiency of DTD in removing phenol to maximum allowable concentration (MAC) 

level 

A series of experiments was performed to investigate the efficiency of 

photolytic removal of phenol by UV irradiation. The results (Fig. 5) show rather low 

phenol removal efficiency (6%) under UV irradiation in the absence of a catalyst (i.e. 

by photolysis).  
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Fig. 5. Comparison of efficiencies of photolysis, adsorption and DTD-photodestruction by time 

dependences of residual phenol content (Cin = 10.74 mg/L; pH = 4.5; T = 20°C, catalyst loading 2 

g/L). 
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The results for photolytic phenol destruction were compared with those 

obtained for adsorption on DTD in dark and photocatalytic degradation in presence of 

photocatalyst DTD under UV irradiation, and a significant decrease in degradation 

degree was revealed for photocatalytic data under the same experimental conditions. 

These results clearly indicate that the phenol degradation observed in the presence of 

the catalyst is only due to the activity of the catalyst. At the initial phenol 

concentration of 10.74 mg/L, MAC would have been reached by photocatalytic 

degradation in 54 min, while during the same time only ~30% of the contaminant was 

removed by simple adsorption, not to mention that phenol is decomposed during 

photocatalysis, and upon adsorption, it simply passes into another phase without any 

change. 
 

CONCLUSIONS 

The photocatalytic activity of a hybrid catalyst based on diatomite and 

nanosized titanium dioxide grafted on its surface (DTD), was studied as an example 

of AOPs application to phenol photodegradation. 

The high efficiency of the DTD photocatalyst was observed in the 

decomposition of phenol in aqueous solution under UV irradiation: the degree of 

removal of the pollutant reached 90% in 180 min of photocatalysis.  

Adsorption in the dark and photolysis under the action of UV radiation without 

the presence of a catalyst led to a slight removal of phenol from the aqueous solution. 

The photocatalytic removal of phenol was found to be strongly affected by the 

initial pollutant concentration, pH and catalyst loading. It was shown that 

photocatalysis with DTD under UV radiation made it possible to achieve the degree 

of purification of the resulting aqueous solution of phenol, corresponding to the MAC 

level for wastewater (5 mg/L) at an initial phenol concentration of 10 mg/L, catalyst 

doze of 2 g/L, and pH = 4.5 within 50 min of the process. 

The kinetics of photodecomposition of phenol in the presence of DTD is well 

described by the Langmuir-Hinshelwood model. 

Overall, the presented results indicate that the hybrid photocatalyst derived 

from diatomite and nanosized TiO2 can be very effective in AOPs mediated 

purification of contaminated aqueous solutions from toxic organic pollutants such as 

phenol. 
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