Chemical Safety Science, 2018, Volume 2, No 2, p. 35 — 44

 

Nanoscale objects and nanomaterials

 

UDC 544.03                                                                              Download PDF (RUS)

DOI: 10.25514/CHS.2018.2.14099

 

ADSORPTION PROPERTIES OF CHARGED NICKEL NANOPARTICLES

 S. Yu. Sarvadii*, A. K. Gatin, M. V. Grishin, and B. R. Shub

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Received November 07, 2018

Published December 26, 2018

Abstract – The paper presents results of studying structural and physical characteristics of nickel nanoparticles deposited on supports of graphite, silicon, aluminum, and titanium. Adsorption properties of the nanostructured compositions have been investigated with respect to hydrogen and water molecules. Properties of the nanostructured systems have been examined by scanning tunneling microscopy and spectroscopy. The study has found that shape and size of nanoparticles are practically not affected by nature of support, while a significant impact of support has been revealed for adsorption properties, apparently due to an excessive charge of the nanoparticles. The adsorption results for H2O molecules correlate with the charge sign of the nanoparticles due to the effects associated with the orientation of the H2O dipole molecules. The adsorption of the non-polar hydrogen molecule is not influenced by the charge sign, but correlates with the total value of the resulting excessive charge of the nickel nanoparticles. The results obtained contribute to characterization of nickel-based nanoparticles, which are not only an object of increased interest from basic science, but are already being used in environmental monitoring systems providing leakage control for a variety of hazardous substances in industry.

Keywords: nickel nanoparticles, graphite, silicon, aluminum, titanium, hydrogen, water, adsorption, interaction.


References:

1. Bukhtiyarov V.I., Slin’ko M.G. // Russ. Chem. Rev. 2001. V. 70. No. 2. P. 147. doi:10.1070/RC2001v070n02ABEH000637.
2. Cuenya B.R. // Thin Solid Films. 2010. V. 518. P. 3127. doi: 10.1016/j.tsf.2010.01.018.
3. Capasso L., Camatini M., Gualtieri M. // Toxicol. Lett. 2014. V. 226. P. 28. doi:10.1016/j.toxlet.2014.01.040.
4. Borse P.H., Yi J.M., Je J.H. et al. // Nanotechnology. 2004. V. 15. P. S389. doi:10.1088/0957-4484/15/6/013.
5. Rostovshchikova T.N., Smirnov V.V., Gurevich S.A. et al. // Catal. Today. 2005. V. 105. P. 344.doi: 10.1016/j.cattod.2005.06.034.
6. Lokteva E.S., Peristyy A.A., Kavalerskaya N.E. et al. // Pure Appl. Chem. 2012. V. 84. No. 3.P.495. doi: 10.1351/PAC-CON-11-07-12.
7. Kavalerskaya, N.E., Lokteva, E.S., Rostovshchikova, T.N. et al. // Kinet. Catal. 2013. V. 54.No. 5. P. 597. doi: 10.1134/S0023158413050066.
8.Scanning Tunnelling Microscopy I. General principles and applications to clean and absorbate-covered surfaces. Ed. by H.-J. Guntherodt, R. Wiesendanger. Berlin: Springer-Verlag, 1992. Р.246.
9.Binnig G., Rohrer H., Berber C., Weibel E. // Appl. Phys. Lett. 1982. V. 40. No. P. 178. doi:10.1063/1.92999.
10. Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy. Berlin: Springer, 2004. P. 210.doi: 10.1007/978-3-662-09801-1.
11. Hamers R.J., Wang Y.J. // Chem. Rev. 1996. V. 96. No. 4. P. 1261. doi: 10.1021/cr950213k.
12. Hamers R.J., Tromp R.M., Demuth J.E. // Phys. Rev. Lett. 1986. V. 56. No. 18. P. 1972. doi:10.1103/PhysRevLett.56.1972.
13. Gatin A.K., Grishin M.V., Dalidchik F.I. et al. // Khimicheskaya Fizika. 2006. V. 25. No. 6. P.17 [in Russian].
14. Song W., Yoshitake M. // Appl. Surf. Sci. 2005. V. 251. P. 14. doi:10.1016/j.apsusc.2005.03.116.
15. Chapman R.A. // J. Appl. Phys. 1964. V. 35. P. 2832. doi: 10.1063/1.1713115.
16. Heinke L., Lichtenstein L., Simon G. H. et al. // ChemPhysChem. 2010. V. 11. P. 2085. doi:10.1002/cphc.201000060.
17. Irwin M.D., Buchholz D.B., Hains A.W. et al. // Proc. Natl. Acad. Sci. 2008. V. 105. No. 8. P.2783. doi: 10.1073/pnas.0711990105.
18. Mo S.-D., Ching W.Y. // Phys. Rev. B. 1995. V. 51. P. 13023. 10.1103/Phys. Rev. B.51.13023 .
19. Tang H., Prasad K., Sanjines R., Schmid P. E., Levy F. // J. Appl. Phys. 1994. V. 75. P. 2042.doi: 10.1063/1.356306.
20. Faes A., Jeangros Q., Wagner J.B. et al. // ECS Transactions. 2009. V. 25. No. 2. P. 1985. doi:10.1149/1.3205743.
21. Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. // Appl. Phys. A. 1998. V. 66.P.S125. doi: 10.1007/s003390051.
22. Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Physical values. Reference book;edited by N.S. Grigorov, E.Z. Meylikhov. M.: Energoatomizdat, 1991. 1232 p. [in Russian].